
Automatic Parameter Tuning of Hierarchical
Incremental Checkpointing

Alfian Amrizal1,3, Shoichi Hirasawa1,3, Hiroyuki Takizawa1,3, and Hiroaki
Kobayashi1,2,3

1 Graduate School of Information Science, Tohoku University
Sendai, Miyagi 980-8578, Japan

Email: {alfian@sc., hirasawa@sc., tacky@, koba@}isc.tohoku.ac.jp
2 Cyberscience Center, Tohoku University

3 Japan Science and Technology Agency, CREST

Abstract. As future HPC systems become larger, the failure rates and
the cost of checkpointing to the global file system are expected to increase.
To solve this problem, this paper proposes a hierarchical incremental
CPR mechanism that utilizes a hierarchical storage system of local sto-
rages and global storages. Then, to adjust the parameters of the proposed
mechanism, a runtime autotuning technique is presented. Evaluation re-
sults show that the timing overhead can be significantly reduced if the
storage hierarchy can be exploited with appropriate checkpoint intervals.

1 Introduction

The computational power of high-performance computing (HPC) systems
is exponentially growing every year and hence enables finer-grained scientific
simulations. However, the exponentially-increasing number of components of
the HPC systems causes the increase in the overall failure rate. Future HPC
systems are predicted to experience a failure every tens of minutes [1]. Thus,
fault-tolerance has become more important than ever for future HPC systems.

Checkpointing and rollback recovery (CPR) is the most widely-used fault-
tolerance mechanism for HPC systems. CPR writes the state of a running process
to a checkpoint file. These checkpoint files are generally stored in a stable storage,
typically a global file system. In this work, the efficiency of a CPR mechanism
is defined as a ratio of ideal time to expected time. Here, ideal time is the
runtime if the application encounters no failures and takes no checkpoints, while
expected time is the runtime when a checkpoint mechanism is implemented and
the occurrence of failures is considered.

Since the computational capabilities are increasing faster than the bandwidth
to the global file system, the checkpointing overhead to the global file system
still can dominate the overall application runtime even if the checkpointing is
performed infrequently. The incremental checkpointing [2] can be one of the
promising technologies to decrease the huge overhead caused by checkpoin-
ting. The incremental checkpointing reduces the data size to be written into



a checkpoint file at every checkpoint by writing only updated data or updated
memory pages between two consecutive checkpoints. The changed data/memory
pages will be marked as dirty and only the dirty memory pages are transferred
during the checkpointing.

Another promising approach to efficient CPR is the hierarchical checkpoin-
ting [3][4] that exploits a hierarchical storage system of local and global storages.
Since each storage has different degrees of resiliency and checkpointing cost, the
hierarchical checkpinting relies on node-local storages for restarting from more
common local failures (e.g. memory errors), and the global file system for global
failures (e.g. total node failures). By frequently taking inexpensive node-local
checkpoints and less frequently taking expensive system-wide global checkpoints,
applications can achieve both high reliability and efficiency.

Both the incremental checkpointing and the hierarchical CPR mechanism can
potentially reduce the timing overhead of CPR if some parameters are adjusted
properly. The important parameters that can significantly affect performance are
the checkpoint interval and the ratio of local checkpoints to global checkpoints [3].
The optimal parameters depend not only on the system configuration but also
on the application to be checkpointed. This is because some information which is
required to determine the optimal parameters, such as the growth speed of dirty
memory pages, is application-specific. Thus, a runtime autotuning technique is
required because this information is unknown in advance of the execution.

In this paper, we propose a hierarchical incremental CPR mechanism and
optimizes its performance through a runtime autotuning technique. As far as
we know, there exists no technique to determine the optimal parameters of a
hierarchical incremental CPR mechanism for a given application and a system.

The rest of this paper is organized as follows. Section 2 describes the hie-
rarchical incremental CPR mechanism and its performance model. Section 3
discusses a runtime autotuning technique to find the optimum parameter com-
bination for the hierarchical incremental CPR mechanism. Section 4 shows the
evaluation results. The conclusion of this paper is stated in Section 5.

2 A Hierarchical Incremental Approach to High
Performance Checkpointing

2.1 A Hierarchical Incremental CPR Mechanism

This paper proposes a hierarchical incremental CPR mechanism. The pro-
posed mechanism uses local and global storages. The local storage is used for
local incremental checkpointing and the global storage for global incremental
checkpointing.

When the initial checkpoint request comes, a full checkpoint, i.e. the whole
memory data of an application, is first taken and dumped to both local and global
storages. After this initial checkpoint, the type of checkpointing conducted, i.e.
local incremental checkpointing or global incremental checkpointing, is deter-
mined by a parameter, which is the ratio of local to global checkpoints.



Fig. 1. Basic structure of the hierarchical checkpointing model

When the local incremental checkpointing is performed, only the dirty me-
mory pages are transferred to the local storage. The full checkpoint file that is
previously saved at the local storage during the initial checkpoint is then updated
using the transferred dirty memory pages. This local incremental checkpointing
process is repeated until the global checkpoint request comes. Global incremental
checkpointing is performed by updating the full checkpoint file in the global
storage with the global incremental data.

2.2 Performance Model

This paper extends Moody’s Markov model [4] to estimate the efficiency of
the proposed mechanism with a certain parameter configuration. Since the model
is built using an existing model, that model’s assumptions are adopted also in
the performance model.

The model is constructed by combining the basic structure illustrated in
Figure 1 with other similar basic structures to create a recursive structure. The
basic structure has computation (white circle) and recovery (blue and red circle)
states labeled by kj . The computation state represents the period of application
computation followed by a level-k checkpoint. In this case, level-1 is a local
checkpoint and level-2 is a global checkpoint. Similarly, the recovery state repre-
sents the period of restoring from a checkpoint at level-k. The time required to
write a level-k checkpoint is ck(t) and the time required to restore an application
using a level-k checkpoint is rk. ck(t) is a function of time since the amount of
dirty memory pages transferred to a checkpoint file is changing with the change
of time. However, rk is not a function of time since a full checkpoint is required
for restarting from any failure. The computation state has an internal counter j
to count how many level-1 checkpoints must be done before a level-2 checkpoint
is performed. The recovery state uses another internal counter to specify the
state, to which the application should be rolled back when a failure occurs.

In this model, an application is transitioning from one state to another. The
probability and the expected time for each of these transitions are labeled pi



and ti, respectively, for i ϵ 0,1,2. p0 represents the probability of transitioning
to the next right computation state and t0 represents the expected time before
the transition. The probability of transitioning to the next right computation
state and the expected time before transition are p0(t+ ck(t)) and t0(t+ ck(t)),
respectively:

p0(t+ ck(t)) = e−λ(t+ck(t)), (1)

t0(t) = t+ ck(t). (2)
Here, λ is the summation of local failure rates, λ1, and global failure rates, λ2,
i.e. λ = λ1 + λ2. Similarly, the probability of transitioning to a level-i recovery
state and the expected time before transition are pi(t+ ck(t)) and ti(t+ ck(t)),
respectively:

pi(t+ ck(t)) =
λi

λ
(1− e−λ(t+ck(t))), (3)

ti(t+ ck(t)) =
1− (λ(t+ ck(t)) + 1)e−λ(t+ck(t))

λ(1− e−λ(t+ck(t)))
. (4)

Using this model under assumption that failures occur based on the Poisson
distribution, the expected runtime to complete a given number of computation
states can be computed. This can be done by taking the sum of the multiplica-
tions of the transition probability, p, with its corresponding expected time before
transition, t, from Equations (1) to (4). Then, a calculation technique similar
to [5] is applied to obtain the application’s expected runtime.

3 A Runtime Autotuning Technique for the Hierarchical
Incremental CPR Mechanism

An analytical solution to find the optimal value of the expected runtime of
the Markov model is too difficult to derive. Hence, one must numerically explore
a huge parameter space of the checkpoint interval and the ratio of local to global
checkpoints. This paper presents a runtime autotuning technique to optimize
the checkpoint interval and the ratio of local to global checkpoints.

A rough approximation of the optimal checkpoint interval was originally
proposed by Young [6]. Then, a higher order estimation was proposed by Daly [7].
Young and Daly show that the optimal checkpoint interval topt is actually a
function of system’s MTTF (Mean Time to Failure) M , which is equal to 1

λ , and
the time to write checkpoint file c, as shown in Equation (5).

topt =
√
2× c×M. (5)

This equation is designed for a non-hierarchical and non-incremental CPR
mechanism where the checkpoint cost is constant. In this paper, Young equation
is extended for the runtime autotuning of the proposed CPR mechanism.



In the case of hierarchical CPR, the checkpoint cost, δc, can be approximated
by the following equation.

δc = P × δc1 + (1− P )× δc2. (6)
Here, P and 1−P are the percentages of local checkpoints and global checkpoints,
respectively. δc1 and δc2 are the average checkpoint time overheads for local
checkpointing and global checkpointing, respectively.

Let µ1 and µ2 be the average numbers of dirty memory pages being check-
pointed to local storages and global storages, respectively. If it is assumed that
the bandwidth to a local storage, B1, and the bandwidth to a global storage,
B2, are constant and can be measured beforehand, then δc1 = µ1/B1 and
δc2 = µ2/B2. Both µ1 and µ2 can be obtained by monitoring the number of
dirty memory pages at runtime.

Let the mean time to local failure and the mean time to global failure be
M1 and M2, respectively. Either a global checkpoint file or a local checkpoint
file is sufficient for recovery from local failures. On the other hand, a global
checkpoint file is necessary for recovery from a global failure. Therefore, the
global checkpoint interval must be optimized for the mean time to global failure
M2. Hence the optimal global checkpointing interval, topt2, can be calculated
with the following equation.

topt2 =
√
2× δc2 ×M2. (7)

Then, the optimal local checkpointing interval, topt1, is calculated by considering
hierarchical checkpointing and local failures.

topt1 =
√

2× {P × δc1 + (1− P )× δc2} ×M1. (8)
For hierarchical CPR, the ratio of local to a global checkpoint can be defined as
the following equation.

P = 1− topt1
topt2

. (9)

Thus, δc1 and δc2 can be obtained if the growth speed of dirty memory
pages and the storage bandwidths of the system are known. The growth speed
of dirty memory pages of an application can be monitored at runtime. Storage
bandwidths are system-specific parameters. The MTTF M can be estimated
using the history data or the failure log of the system. Thus, unknown variables
are now topt1, topt2, and P . By solving Equations (7), (8), and (9), these unknown
parameters can be obtained. Then, the obtained values are used for the runtime
parameter tuning in the hierarchical incremental CPR mechanism.

4 Evaluation

In this paper, efficiency is used as the performance metric to evaluate the
impact of the proposed mechanism for a particular application and system



Fig. 2. The growth speed of dirty memory pages for structured diagonal sparse matrix
(left) and unstructured random sparse matrix (right).

configuration. Two sparse matrix multiplication kernels are used in the eva-
luation. To calculate the efficiency, the values of all of the parameters of the
Markov model must be known. One of these parameters is the checkpoint time,
ck(t). In order to obtain ck(t), the growth speed of dirty memory pages of the
matrix kernels must be monitored at runtime. Figure 2 shows the monitoring
results. In this figure, the x-axis shows the elapsed time. The y-axis shows the
number of dirty memory pages. This figure indicates that the value of ck(t) at a
certain time instance can be obtained through the following equation:

ck(t) =
dirtydata(t)

bandwidthk
. (10)

Here, dirtydata(t) is the number of dirty memory pages obtained by monitoring
the memory access behaviors at runtime, and bandwidthk is the bandwidth for
performing a level-k checkpoint.

The evaluation is conducted via a simulation by assuming that a RAM
disk and a Lustre system are used as the local storage and the global storage,
respectively. The write bandwidth data in [4] and the failure data in [8] are
used in the evaluation. The bandwidth to local storage, the bandwidth to global
storage, the local failure rate, and the global failure rate are set to 6.25 Gbps,
125 Mbps, 0.1757×10−2 and 0.1778×10−4, respectively.

At the beginning of the simulation, the checkpoint interval is set to 100 s
and the ratio of local to global checkpoint is set to 2:1. Each time a global
checkpoint is taken, the average number of dirtydata(t) up until that point
is recorded. Then, ck(t) is calculated using Equation (10). Using the obtained
value of ck(t), the autotuning technique is used to adjust the checkpoint interval
and the ratio of local to global checkpoints. This process is repeated until the
application reaches its end. Then, the Markov model is used to evaluate the gain
in efficiency from the autotuning technique.

Figure 3(a) presents the efficiency comparison of the hierarchical incremental
CPR mechanism with and without the autotuning technique when running
the random sparse matrix kernel (Figure 2). The results with the autotuning
technique implemented are labelled “auto-inc”and those without the autotuning
technique as “inc”. As future HPC systems become larger, the failure rates and



(a) (b)

Fig. 3. (a) Comparison of hierarchical incremental CPR’s efficiency with and with-
out autotuning mechanism. (b) Efficiency versus compute interval for different growth
speed of dirty memory pages.

the cost of accessing the global file system are expected to increase. To explore
these effects, the base failure rates and the level-2 checkpoint costs are increased
by factors of two and ten. The groups of bars along the x-axis correspond to
failure rates that are one, two, or ten times higher than the base value. Within
each group, the cost of the level-2 checkpoint is increased by one, two, and ten
times higher than the base value.

In all the cases, the autotuning technique results in a higher efficiencies as
shown in Figure 3(a). Moreover, the advantage increases with either increasing
failure rates or higher global storage checkpoint costs. The gain in efficiency
ranges from 4% to 28%. These results highlight the benefits of the proposed
autotuning technique.

The results in Figure 3(a) show that the autotuning technique for the hierar-
chical incremental CPR is essential for future HPC systems. Even with systems
that are 10× less reliable, the efficiency achieved by the proposed approach
exceeds 40% as long as the global file system performance is unchanged. On
the other hand, a higher failure rate cannot be tolerated if the cost of global
checkpointing increases. In particular, if a system becomes 10× less reliable and
if the cost of saving application state to the global file system rises by 10×,
even with the proposed approach, the application will not be able to finish its
computation.

Then, the accuracy of the autotuning technique is investigated. Figure 3(b)
shows the expected efficiency when running the random sparse matrix kernel
(black curve) and the diagonal sparse matrix kernel (brown curve). The growth
speed of dirty memory pages of the diagonal sparse matrix is approximately
three times higher than the random sparse matrix. The failure rates (labelled
“F”) are also changed to be three times higher than their base values. The plots
were produced assuming that the ratio of local to global checkpoints is 4 and
the compute interval is changed from 0 to 50 seconds.



Overall, a broad range of checkpoint intervals that result in near-optimal
efficiencies can be observed. The range becomes narrower as failure rates and
growth speed of dirty memory pages increase. The star marks in Figure 3(b)
are the efficiencies obtained by tuning the checkpoint interval. The runtime
autotuning technique can successfully reach the near-optimal checkpoint interval
parameters that lead to these near-optimal efficiencies.

5 Conclusions
This paper proposed a hierarchical incremental CPR mechanism to reduce

the timing overhead of checkpointing for a large scale HPC system. This mecha-
nism can reduce the checkpoint time overhead by adjusting tuning parameters.
To adjust these parameters, a runtime autotuning technique is presented. The
evaluation results show that the runtime autotuning technique can find near-
optimal parameter configurations to reduce the checkpoint time overhead and
increases system efficiency. In the future work, this technique will be extended
to account for additional features of CPR such as checkpoint compression.

6 Acknowledgments
This research is partially supported by JST CREST “An Evolutionary Ap-

proach to Construction of a Software Development Environment for Massively-
Parallel Heterogeneous Systems” and Grant-in-Aid for Scientific Research(B)
#25280041. One co-author, Alfian Amrizal, is financially supported by Mon-
bukagakusho.

References
1. Schroeder, B., Gibson, G. A.: Understanding failures in petascale computers.

Journal of Physics: Conference Series, vol. 78, no. 012022, 2007.
2. Sancho, J. C., Pertini, F., Johnson, G., Fernandez, J., Frachtenberg E.: On the

feasibility of incremental checkpointing for scientific computing. In Proceedings of
IPDPS 2004, pp. 58-67, 2004.

3. Amrizal, A., Hirasawa, S., Komatsu, K., Takizawa, H., Kobayashi, H.: Improving the
scalability of transparent checkpointing for GPU computing systems. In Proceedings
of the 2012 IEEE Region 10 Conference, pp. 989-994, 19-22 November 2012.

4. Moody, A., Bronevetsky, G., Mohror, K., Supinski, B. R.: Design, modeling, and
evaluation of a scalable multi-level checkpointing system. In Proceedings of SC’10,
2010.

5. Vaidya, N. H., A case for two-level recovery schemes. IEEE Transactions on
Computers , Vol.47, No.6, pp. 656–666, June 1998.

6. Young, J. W., A first order approximation to the optimum checkpoint interval,
Communications of the ACM, vol. 17, no. 9, pp. 530–531, 1974.

7. Daly, J. T., A higher order estimate of the optimum checkpoint interval for restart
dumps, Future Generation Computer Systems, vol. 22, no. 3, pp. 303-312, 2006.

8. Vivek Sarkar, E., Exascale software study: software challenges in exascale systems,
2009.


