
Historic Learning Approach for Auto-tuning
OpenACC Accelerated Scientific Applications

Shahzeb Siddiqui1, Saber Feki1

1 King Abdullah University of Science and Technology, Kingdom of Saudi Arabia
{Shahzeb.Siddiqui, Saber.Feki}@kaust.edu.sa

Abstract. The performance optimization of scientific applications usually
requires an in-depth knowledge of the hardware and software. A performance
tuning mechanism is suggested to automatically tune OpenACC parameters to
adapt to the execution environment on a given system. A historic learning based
methodology is suggested to prune the parameter search space for a more
efficient auto-tuning process. This approach is used to tune the OpenACC gang
and vector clauses for a better mapping of the compute kernels onto the
underlying architecture. Our experiments show a significant performance
improvement against the default compiler parameters and drastic reduction in
tuning time compared to a brute force search-based approach.

1 Introduction

Accelerators are gradually becoming mainstream in supercomputing as their
capability to significantly accelerate a large spectrum of scientific applications at a
higher power efficiency has been clearly identified and proven. Moreover, with the
introduction of high level programming models such as OpenACC [1] and OpenMP
4.0 [2], these devices are becoming more accessible and practical to use by a larger
scientific community. OpenACC was announced in the ACM/IEEE Supercomputing
Conference 2011 as a new standard for parallel programming targeting hardware
accelerators. Although the goal of the standard is to increase programmer productivity
by using compiler directives, getting the best performance of the target device is still
tedious and requires a significant effort by the developer to tune some of the
OpenACC annotations and the corresponding parameters. As a matter of fact, without
tuning, a suboptimal performance is recorded on different applications while using the
latest implementations of OpenACC compilers. In this work, we propose a new
methodology for empirical tuning of OpenACC accelerated scientific applications to
relieve the end user from this burden. The OpenACC gang and vector clauses are
used to map nested loops to the underlying hardware architecture. The auto-tuning
engine performs a search on the space of possible uses of these clauses and their
corresponding attributes, for a better mapping and thus to improve the performance of
the offloaded kernel. However, when the number of parameters is quite big, the
search space becomes significantly large, and the tuning procedure becomes very
expensive and unpractical. We suggest a performance tuning strategy that reduces the

cost of tuning by pruning the search space using the historic knowledge of previous
tuning operations performed on similar problem sizes. This approach was presented
and its effectiveness was demonstrated on auto-tuning MPI communication operations
in the Abstract Data and Communication Library (ADCL) [3], [4].

The remainder of the paper is organized as follows. Section 2 introduces our
methodology to efficiently tune OpenACC clauses using a historic learning approach.
In section 3, the experimental setup is described and the performance results of the
proposed tuning strategy are reported. Section 4 presents the related work in this
research area. Finally, Section 5 summarizes our findings and future work.

2 Performance Tuning Methodology

The OpenACC standard offers flexibility to the developer to further tune the loop
pragma with the gang and vector clauses and therefore control the mapping of the
nested loops to the underlying hardware specification; that is the threads partitioning
in the accelerator. The gang clause specifies in how many groups to aggregate the
parallel threads generated by the parallelization of the given loop, which corresponds
to the shape and size of the grid of blocks in the GPU environment. The vector clause
specifies the granularity of the parallel threads per gang, which translates to the
dimensionality and the size per dimension of each of the thread blocks in NVIDIA
hardware. The latest compiler technology relies on heuristics to specify these
parameters for a given application. Our analysis showed that a significant
improvement could be further obtained by spending more effort in tuning these
parameters. Our methodology of tackling this particular aspect is described next.

2.1 Tuning Methodology of OpenACC loop clauses

The strategy for auto-tuning proposed here is based on empirical evaluation of
different uses of the OpenACC clauses gang and vector in nested loops as depicted in
Fig. 1. The performance tuning procedure is in two steps. In the first phase, the
performance of different placements of the gang and vector clauses within the nested
loops is evaluated and the best performing one is selected. At this initial phase, we
keep the compiler choice of the numbers of gangs and vectors by omitting any
specific values. Once the optimal placement of these clauses is determined, we
explore in the second phase different numbers of gangs and vectors other than the
ones chosen by the compiler. This tuning methodology is referred as the brute force
tuning in the experimental results section. It is worth noting that the set of meaningful
configurations is constrained by the specification of the accelerator. Despite this
restriction, this parameter space can be very huge, and using an exhaustive search on
all possible combinations could be considerably time-consuming and unreasonable. A
historic learning based approach able to shrink the search space and accelerate the
tuning process is detailed next.

Fig. 1. Different placements of the gang and vector clauses in three nested loops

2.2 Historic Learning Approach

Tuning OpenACC gang and vector clauses with an exhaustive search of the full
parameter space is time consuming. We suggest here a tuning methodology based on
the previous tuning results of the same application, for different problem sizes, on the
same hardware. Practically, a learning phase is needed for building a knowledge
database out of the best tuning parameters for various input sizes. Given a new
problem size PSnew for the same application, the closest problem size in the
knowledge base is then identified using the Euclidian distance for example. This
problem size is used as a reference for the suggested tuning approach and is referred
as PSref. The tuning parameters of PSref are used to define a subset of the parameters
space to be explored by the tuning engine for PSnew. This subset consists in a smaller
range of gang and vector values, the closest to the optimal parameters for PSref. The
search space of possible parameters combinations is then drastically reduced and the
tuning procedure becomes much faster and thus more attractive. The tuning results of
PSnew are then included to enrich the tuning knowledge database for future reuse. This
tuning methodology is referred as the historic learning tuning in the experimental
results section.

3 Experimental Results

The test bed hardware and software specifications and the test application used for
this performance analysis are first described. Following that, we showcase the

#pragma acc kernels

#pragma acc loop independent
gang(a),vector(b)

 for (x = 4 ; x < nx-4; x++) {
#pragma acc loop independent gang(c)

 for (y = 4; y < ny-4; y++) {

#pragma acc loop independent vector(d)
 for (z = 4; k < nz-4; z++) {

 U[x][y][z] = c1*V[x]][y][z] +

 } } }

#pragma acc kernels

#pragma acc loop independent
for (x = 4 ; x < nx-4; x++) {

#pragma acc loop independent
gang(a),vector(b)

 for (y = 4; y < ny-4; y++) {

#pragma acc loop independent
gang(c),vector(d)

 for (z = 4; k < nz-4; z++) {
 U[x][y][z] = c1*V[x]][y][z] +

} } }

#pragma acc kernels

#pragma acc loop independent gang(a)
 for (x = 4 ; x < nx-4; x++) {

#pragma acc loop independent
gang(b),vector(c)

 for (y = 4; y < ny-4; y++) {

#pragma acc loop independent vector(d)
 for (z = 4; k < nz-4; z++) {

 U[x][y][z] = c1*V[x]][y][z] +
 } } }

#pragma acc kernels
#pragma acc loop independent
gang(a),vector(b)
 for (x = 4 ; x < nx-4; x++) {

#pragma acc loop independent vector(c)

 for (y = 4; y < ny-4; y++) {
#pragma acc loop independent
gang(d),vector(e)
 for (z = 4; k < nz-4; z++) {

 U[x][y][z] = c1*V[x]][y][z] +

 } } }

importance of the gang and vector clauses placement within nested loops to the
performance tuning of OpenACC applications. The performance gain of applying the
suggested tuning methodology on the test application as well as the tuning time
reduction by using the historic learning approach is reported.

3.1 Test Bed Specifications and Test Application

The test bed used for performance evaluation consists in a dual socket CPU system
hosting four NVIDIA Kepler K20c GPU cards. Each socket is an eight-core Sandy
Bridge Intel(R) Xeon(R) CPU E5-2650, running at a clock speed of 2.00GHz. The
software stack consists in the PGI compiler version 12.9, and the NVIDIA CUDA
driver 5.0.
In our experiments, we used the isotropic finite difference kernel, which constitutes
the building block for the Reverse Time Migration (RTM) and the Full Waveform
Inversion (FWI) applications, extensively used by the oil and gas exploration industry
for the velocity model building and seismic imaging of the sub-surface. The Reverse
Time Migration application consists in a forward modeling and backward migration
using a finite difference kernel that solves the acoustic wave equation.

where c is the velocity of the propagated wave and P is the wavefield pressure.	

The
3D finite difference stencil scheme is 8th order in space and 2nd order in time.

 3.2 Importance of Gang and Vector Placement

The application of the brute force tuning methodology to a set of ten different
problem sizes resulted in a performance improvement of up to 30% while compared
to the base code version tuned by the compiler. It is emphasized here that the optimal
gang and vector clauses placement varies from one problem size to another. Table 1
shows for each 3D problem size, the chosen grid and block sizes by the compiler and
the corresponding tuned parameters. The color code of each row corresponds to a
different placement of the gang and vector clauses in the three nested loops as
depicted in Fig 1. We can conclude here that the first phase in the proposed tuning
methodology is crucial as the clauses placement in the nested loops has a significant
importance in the performance tuning of the OpenACC code.

Table 1: Compiler choices versus tuning results for gang and vector placement and values for
different problem sizes

3.3 Performance Tuning Results

In the brute force search-based tuning methodology, the performance of the compute
kernel is evaluated with all possible gang and vector values allowed by the hardware
specification of the K20c GPU. In our experiment, the gang values were chosen at
increments of 2, starting from 2 to 1,024. The vector values were chosen in multiples
of 32 (warp size), starting from 32 to 1,024. The total search space consists of 16,384
combinations. The brute force tuning method is a very time consuming process yet
very simple in finding the best possible gang and vector tuple. The historic learning
algorithm is used to identify a reference problem size PSref with a known solution (i.e.
gang and vector tuple). The search space is then reduced by selecting a subset range
of parameters keeping only the closest ten values of gang and vector with regard to
the reference problem size solution. Therefore, the parameters space to be explored
and evaluated is significantly reduced to only a 100 combination. The brute force
search tuning method was first applied to 25 problem sizes and the best tuning
parameters are stored in a knowledge base. Then, another set of 8 different problem
sizes are tuned using both the brute force search and the historic learning tuning
approaches. The performance speedups in comparison to the compiler tuned code
version as well as the tuning time are recorded while using either of the tuning
approaches for each of the eight new investigated problem sizes. As shown in Fig. 1,
the tuning procedure using either the brute force search or the historic learning tuning
method resulted in a better performance than the compiler default tuning. Indeed, a
performance increase of up to 80% is recorded against the performance of the base
code. Moreover, the performance of the code while tuned with the historic learning
approach is within less than 1.5% of the best possible performance recorded while
using a brute force search. The two cases where the historic learning tuned code was
not performing as well as the brute force search tuned version are with the problem
size 1500x400x400 and 800x600x400. The analysis of the data shows that the main
reason for that is the lack of a close enough problem size in the database used for the
prediction of a problem size of reference. Indeed, the two problem sizes have the

3D Domain Size Grid/block sizes chosen by PGI Tuned grid/block sizes
128x128x128 grid: [2x30] block: [64x4] grid: [30x120] block: [64x4]
256x256x256 grid: [4x62] block: [64x4] grid: [248x6] block: [64x6]
512x512x512 grid: [8x126] block: [64x4] grid[504x63] block: [32x8]
640x640x640 grid: [10x158] block: [64x4] grid: [10x316] block: [64x4x2]
128x128x640 grid: [10x30] block: [64x4] grid: [10x64] block: [64x4]
128x640x128 grid: [2x158] block: [64x4] grid: [4x256] block: [64x4]
640x128x128 grid: [2x30] block: [64x4] grid: [2x316] block: [64x4x2]
640x640x128 grid: [2x158] block: [64x4] grid: [2x316] block: [64x4x2]
640x128x640 grid: [10x30] block: [64x4] grid: [10x316] block: [64x4x2]
28x640x640 grid: [10x158] block: [64x4] grid: [10x256] block: [128x4]

highest Euclidian distance to the problem size of reference used. Fig. 2 shows the
required time for tuning a given problem size with the brute force and the historic
learning based tuning methods. Our experiment shows that the tuning time is reduced
dramatically by a factor of 18 to 52 times while using the new proposed tuning
approach. At the same time, a comparable performance to the brute force search
approach is achieved as detailed before.

Fig. 3. Performance speedup analysis using the different tuning methodologies in
comparison to the compiler tuning performance

Fig. 4. Tuning time using the brute force and the historic learning tuning approach

4 Related Work

A significant research has been conducted in tuning applications written for GPUs. At
the compiler level, another directive-based programming models called HMPP [6], is
presented along with its tuning methodology. The CAPS OpenACC compiler also
includes an auto-tuning driver that can explore the optimization space to tune kernel
regions [15]. At the application level, researchers applied various tuning mechanisms
to GPU codes such as sparse matrix-vector multiply [5], stencil computations [11],
[7], and computational electromagnetics [14]. Vuduc proposed in [12] a statistical
approach for automatic performance tuning of matrix-matrix multiply operation.
AtuneRT [13] is an application-independent auto-tuner, which optimizes GPU-
specific parameters such as block size and loop-unrolling degree.

The historic learning approach was applied to the runtime tuning of MPI
communications in the abstract data and communication library (ADCL) [8], [9]. The
notion of historic learning is also implemented to a limited extent in FFTW [10],
namely with a feature called Wisdom. The user can export experiences gathered in
previous runs into a file, and reload it at subsequent executions. However, the wisdom
concept in FFTW lacks any notion of related problems, i.e. wisdom information can
only be reused for exactly the same problem size that was used to generate it.

5 Conclusions and Future Work

A historic learning-based performance tuning of OpenACC accelerated applications is
presented. The performance results obtained by the proposed tuning methodology on
a finite difference kernel showed a significant performance gain against the compiler-
tuned code and close to the optimal performance that can be obtained with an
exhaustive search. Furthermore, the time needed for tuning is reduced drastically
compared to the brute force tuning technique. Nevertheless, the main limitation of this
approach is its dependency on the historic data that is crucial for a good prediction
and therefore for achieving a performance close to the tuned code with a brute force
search.
Our future work includes the automation of the tuning process including a code
generator tool along with a tuning engine and its application to a larger spectrum of
scientific applications and on a variety of accelerator architectures including different
NVIDIA GPU generations and Intel’s Xeon Phi coprocessors. Other machine learning
algorithms such as Bayesian classifiers and support vector machines will be explored
for a better prediction of the most similar problem size to use as a reference to shrink
the search space.

Acknowledgments. The authors would like to thank NVIDIA for the hardware
donation to King Abdullah University of Science and Technology in the context of
the CUDA Research Center award.

References

1. OpenACC Standard specification, www.openacc-standard.org
2. OpenMP 4.0 specification, www.openmp.org/mp-documents/OpenMP4.0.0.pdf
3. Gabriel, E., Feki, S., Benkert, K., Chaarawi, M.: The abstract data and communication

library. Journal of Algorithms and Computational Technology, 2(4):581–600, 2008
4. Gabriel, E., Feki, S., Benkert, K., and Resch, M.: Towards performance and portability

through runtime adaption for high performance computing applications. In International
Supercomputing Conference, Dresden, Germany, June 2008

5. Choi, J.W., Singh, A., Vuduc, R.W.: Model-driven autotuning of sparse matrix-vector
multiply on gpus. In Proceedings of the 15th Symposium on Principles

6. Dolbeau, R., Bihan, S. and Bodin, F.: HMPP: a hybrid multi-core parallel programming
environment. In the1st Workshop on General Purpose Processing on Graphics Processing
Units, GPGPU, 2007.

7. Feki, S., Siddiqui, S.: Towards Automatic Performance Tuning of OpenACC Accelerated
Scientific Applications. In GPU Technology Conference, San Jose, California, USA, 2003

8. Feki, S., Gabriel E.: A Historic Knowledge Based Approach for Dynamic Optimization. In
proceedings of the International Conference on Parallel Computing, P. 389-396, 2009

9. Feki S., Gabriel, E.: Incorporating Historic Knowledge into a Communication Library for
Self-Optimizing High Performance Computing Applications. In second IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Venice, Italy, 2008

10. Frigo, M., Johnson, S.: The design and implementation of FFTW3. Proceedings of IEEE,
93(2):216–231, 2005

11. Mametjanov, A., Lowell, M.C., Norris, B.: Autotuning Stencil-Based Computations on
GPUs, Cluster Conference, Beijing, China, 2012

12. R. Vuduc, J. W. Demmel, and J. A. Bilmes. Statistical models for empirical search-based
performance tuning. International Journal for High Performance Computing Applications,
18(1):65–94, 2004.

13. Tillmann, M., Karcher, T., Dachsbacher, C., Tichy, W.F.: Application-independent
Autotuning for GPUs, In International Conference on Parallel Computing, Munich,
Germany, 2013

14. Feki, S., Al-Jarro, A, Bagci, H.: Multi-GPU-based Acceleration of the Explicit Time
Domain Volume Integral Equation Solver Using MPI-OpenACC. IEEE International
Symposium on Antennas and Propagation and USNC/URSI National Radio Science, Lake
Buena Vista, Florida, USA, 2013.

15. Bodin, F.: Using CAPS Compiler on NVIDIA Kepler and CARMA Systems,
Supercomputing, Salt Lake City, Utah, USA, 2012

