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Abstract. The performance optimization of scientific applications usually 
requires an in-depth knowledge of the hardware and software. A performance 
tuning mechanism is suggested to automatically tune OpenACC parameters to 
adapt to the execution environment on a given system. A historic learning based 
methodology is suggested to prune the parameter search space for a more 
efficient auto-tuning process. This approach is used to tune the OpenACC gang 
and vector clauses for a better mapping of the compute kernels onto the 
underlying architecture. Our experiments show a significant performance 
improvement against the default compiler parameters and drastic reduction in 
tuning time compared to a brute force search-based approach. 

1   Introduction 

Accelerators are gradually becoming mainstream in supercomputing as their 
capability to significantly accelerate a large spectrum of scientific applications at a 
higher power efficiency has been clearly identified and proven. Moreover, with the 
introduction of high level programming models such as OpenACC [1] and OpenMP 
4.0 [2], these devices are becoming more accessible and practical to use by a larger 
scientific community. OpenACC was announced in the ACM/IEEE Supercomputing 
Conference 2011 as a new standard for parallel programming targeting hardware 
accelerators. Although the goal of the standard is to increase programmer productivity 
by using compiler directives, getting the best performance of the target device is still 
tedious and requires a significant effort by the developer to tune some of the 
OpenACC annotations and the corresponding parameters. As a matter of fact, without 
tuning, a suboptimal performance is recorded on different applications while using the 
latest implementations of OpenACC compilers. In this work, we propose a new 
methodology for empirical tuning of OpenACC accelerated scientific applications to 
relieve the end user from this burden. The OpenACC gang and vector clauses are 
used to map nested loops to the underlying hardware architecture. The auto-tuning 
engine performs a search on the space of possible uses of these clauses and their 
corresponding attributes, for a better mapping and thus to improve the performance of 
the offloaded kernel. However, when the number of parameters is quite big, the 
search space becomes significantly large, and the tuning procedure becomes very 
expensive and unpractical. We suggest a performance tuning strategy that reduces the 



cost of tuning by pruning the search space using the historic knowledge of previous 
tuning operations performed on similar problem sizes. This approach was presented 
and its effectiveness was demonstrated on auto-tuning MPI communication operations 
in the Abstract Data and Communication Library (ADCL) [3], [4].  

 
The remainder of the paper is organized as follows. Section 2 introduces our 
methodology to efficiently tune OpenACC clauses using a historic learning approach. 
In section 3, the experimental setup is described and the performance results of the 
proposed tuning strategy are reported. Section 4 presents the related work in this 
research area. Finally, Section 5 summarizes our findings and future work. 

2   Performance Tuning Methodology 

The OpenACC standard offers flexibility to the developer to further tune the loop 
pragma with the gang and vector clauses and therefore control the mapping of the 
nested loops to the underlying hardware specification; that is the threads partitioning 
in the accelerator. The gang clause specifies in how many groups to aggregate the 
parallel threads generated by the parallelization of the given loop, which corresponds 
to the shape and size of the grid of blocks in the GPU environment. The vector clause 
specifies the granularity of the parallel threads per gang, which translates to the 
dimensionality and the size per dimension of each of the thread blocks in NVIDIA 
hardware. The latest compiler technology relies on heuristics to specify these 
parameters for a given application. Our analysis showed that a significant 
improvement could be further obtained by spending more effort in tuning these 
parameters. Our methodology of tackling this particular aspect is described next. 

2.1   Tuning Methodology of OpenACC loop clauses 

The strategy for auto-tuning proposed here is based on empirical evaluation of 
different uses of the OpenACC clauses gang and vector in nested loops as depicted in 
Fig. 1. The performance tuning procedure is in two steps. In the first phase, the 
performance of different placements of the gang and vector clauses within the nested 
loops is evaluated and the best performing one is selected. At this initial phase, we 
keep the compiler choice of the numbers of gangs and vectors by omitting any 
specific values. Once the optimal placement of these clauses is determined, we 
explore in the second phase different numbers of gangs and vectors other than the 
ones chosen by the compiler. This tuning methodology is referred as the brute force 
tuning in the experimental results section. It is worth noting that the set of meaningful 
configurations is constrained by the specification of the accelerator. Despite this 
restriction, this parameter space can be very huge, and using an exhaustive search on 
all possible combinations could be considerably time-consuming and unreasonable. A 
historic learning based approach able to shrink the search space and accelerate the 
tuning process is detailed next. 
 



Fig. 1. Different placements of the gang and vector clauses in three nested loops 

2.2   Historic Learning Approach 

Tuning OpenACC gang and vector clauses with an exhaustive search of the full 
parameter space is time consuming. We suggest here a tuning methodology based on 
the previous tuning results of the same application, for different problem sizes, on the 
same hardware. Practically, a learning phase is needed for building a knowledge 
database out of the best tuning parameters for various input sizes. Given a new 
problem size PSnew for the same application, the closest problem size in the 
knowledge base is then identified using the Euclidian distance for example. This 
problem size is used as a reference for the suggested tuning approach and is referred 
as PSref. The tuning parameters of PSref are used to define a subset of the parameters 
space to be explored by the tuning engine for PSnew. This subset consists in a smaller 
range of gang and vector values, the closest to the optimal parameters for PSref. The 
search space of possible parameters combinations is then drastically reduced and the 
tuning procedure becomes much faster and thus more attractive. The tuning results of 
PSnew are then included to enrich the tuning knowledge database for future reuse. This 
tuning methodology is referred as the historic learning tuning in the experimental 
results section. 

3   Experimental Results 

The test bed hardware and software specifications and the test application used for 
this performance analysis are first described. Following that, we showcase the 

#pragma acc kernels 

#pragma acc loop independent 
gang(a),vector(b) 

  for (x = 4 ; x < nx-4; x++) {   
#pragma acc loop independent gang(c) 

    for (y = 4; y < ny-4; y++) { 

#pragma acc loop independent vector(d) 
      for (z = 4; k < nz-4; z++) { 

        U[x][y][z] = c1*V[x]][y][z] + ....   
  

   } } } 

#pragma acc kernels 

#pragma acc loop independent  
for (x = 4 ; x < nx-4; x++) {   

#pragma acc loop independent 
gang(a),vector(b) 

    for (y = 4; y < ny-4; y++) { 

#pragma acc loop independent 
gang(c),vector(d) 

      for (z = 4; k < nz-4; z++) { 
        U[x][y][z] = c1*V[x]][y][z] + .... 

} } } 

#pragma acc kernels 

#pragma acc loop independent gang(a) 
  for (x = 4 ; x < nx-4; x++) {   

#pragma acc loop independent 
gang(b),vector(c) 

    for (y = 4; y < ny-4; y++) { 

#pragma acc loop independent vector(d) 
      for (z = 4; k < nz-4; z++) { 

        U[x][y][z] = c1*V[x]][y][z] + .... 
   } } } 

#pragma acc kernels 
#pragma acc loop independent 
gang(a),vector(b) 
  for (x = 4 ; x < nx-4; x++) {   

#pragma acc loop independent vector(c) 

    for (y = 4; y < ny-4; y++) { 
#pragma acc loop independent 
gang(d),vector(e) 
      for (z = 4; k < nz-4; z++) { 

        U[x][y][z] = c1*V[x]][y][z] + .... 

   } } } 



importance of the gang and vector clauses placement within nested loops to the 
performance tuning of OpenACC applications. The performance gain of applying the 
suggested tuning methodology on the test application as well as the tuning time 
reduction by using the historic learning approach is reported.  

3.1   Test Bed Specifications and Test Application 

The test bed used for performance evaluation consists in a dual socket CPU system 
hosting four NVIDIA Kepler K20c GPU cards. Each socket is an eight-core Sandy 
Bridge Intel(R) Xeon(R) CPU E5-2650, running at a clock speed of 2.00GHz. The 
software stack consists in the PGI compiler version 12.9, and the NVIDIA CUDA 
driver 5.0.  
In our experiments, we used the isotropic finite difference kernel, which constitutes 
the building block for the Reverse Time Migration (RTM) and the Full Waveform 
Inversion (FWI) applications, extensively used by the oil and gas exploration industry 
for the velocity model building and seismic imaging of the sub-surface. The Reverse 
Time Migration application consists in a forward modeling and backward migration 
using a finite difference kernel that solves the acoustic wave equation. 

 
where c is the velocity of the propagated wave and P is the wavefield pressure.	

The 
3D finite difference stencil scheme is 8th order in space and 2nd order in time.  

 3.2   Importance of Gang and Vector Placement 

 
The application of the brute force tuning methodology to a set of ten different 
problem sizes resulted in a performance improvement of up to 30% while compared 
to the base code version tuned by the compiler. It is emphasized here that the optimal 
gang and vector clauses placement varies from one problem size to another. Table 1 
shows for each 3D problem size, the chosen grid and block sizes by the compiler and 
the corresponding tuned parameters. The color code of each row corresponds to a 
different placement of the gang and vector clauses in the three nested loops as 
depicted in Fig 1. We can conclude here that the first phase in the proposed tuning 
methodology is crucial as the clauses placement in the nested loops has a significant 
importance in the performance tuning of the OpenACC code. 
 

 
 
 
 
 
 

 



Table 1: Compiler choices versus tuning results for gang and vector placement and values for 
different problem sizes 

3.3   Performance Tuning Results 

In the brute force search-based tuning methodology, the performance of the compute 
kernel is evaluated with all possible gang and vector values allowed by the hardware 
specification of the K20c GPU. In our experiment, the gang values were chosen at 
increments of 2, starting from 2 to 1,024. The vector values were chosen in multiples 
of 32 (warp size), starting from 32 to 1,024. The total search space consists of 16,384 
combinations. The brute force tuning method is a very time consuming process yet 
very simple in finding the best possible gang and vector tuple. The historic learning 
algorithm is used to identify a reference problem size PSref with a known solution (i.e. 
gang and vector tuple). The search space is then reduced by selecting a subset range 
of parameters keeping only the closest ten values of gang and vector with regard to 
the reference problem size solution. Therefore, the parameters space to be explored 
and evaluated is significantly reduced to only a 100 combination. The brute force 
search tuning method was first applied to 25 problem sizes and the best tuning 
parameters are stored in a knowledge base. Then, another set of 8 different problem 
sizes are tuned using both the brute force search and the historic learning tuning 
approaches. The performance speedups in comparison to the compiler tuned code 
version as well as the tuning time are recorded while using either of the tuning 
approaches for each of the eight new investigated problem sizes. As shown in Fig. 1, 
the tuning procedure using either the brute force search or the historic learning tuning 
method resulted in a better performance than the compiler default tuning. Indeed, a 
performance increase of up to 80% is recorded against the performance of the base 
code. Moreover, the performance of the code while tuned with the historic learning 
approach is within less than 1.5% of the best possible performance recorded while 
using a brute force search. The two cases where the historic learning tuned code was 
not performing as well as the brute force search tuned version are with the problem 
size 1500x400x400 and 800x600x400. The analysis of the data shows that the main 
reason for that is the lack of a close enough problem size in the database used for the 
prediction of a problem size of reference. Indeed, the two problem sizes have the 

3D Domain Size Grid/block sizes chosen by PGI Tuned grid/block sizes 
128x128x128 grid: [2x30]  block: [64x4] grid: [30x120]  block: [64x4] 
256x256x256 grid: [4x62]  block: [64x4] grid: [248x6]  block: [64x6] 
512x512x512 grid: [8x126]  block: [64x4] grid[504x63]  block: [32x8] 
640x640x640 grid: [10x158]  block: [64x4] grid: [10x316]  block: [64x4x2] 
128x128x640 grid: [10x30]  block: [64x4] grid: [10x64]  block: [64x4] 
128x640x128 grid: [2x158]  block: [64x4] grid: [4x256]  block: [64x4] 
640x128x128 grid: [2x30]  block: [64x4] grid: [2x316]  block: [64x4x2] 
640x640x128 grid: [2x158]  block: [64x4] grid: [2x316]  block: [64x4x2] 
640x128x640 grid: [10x30]  block: [64x4] grid: [10x316]  block: [64x4x2] 
28x640x640 grid: [10x158]  block: [64x4] grid: [10x256]  block: [128x4] 



highest Euclidian distance to the problem size of reference used. Fig. 2 shows the 
required time for tuning a given problem size with the brute force and the historic 
learning based tuning methods. Our experiment shows that the tuning time is reduced 
dramatically by a factor of 18 to 52 times while using the new proposed tuning 
approach. At the same time, a comparable performance to the brute force search 
approach is achieved as detailed before.  
 

 
 
Fig. 3. Performance speedup analysis using the different tuning methodologies in 
comparison to the compiler tuning performance 

 

 
 
Fig. 4. Tuning time using the brute force and the historic learning tuning approach 



4   Related Work 

A significant research has been conducted in tuning applications written for GPUs. At 
the compiler level, another directive-based programming models called HMPP [6], is 
presented along with its tuning methodology. The CAPS OpenACC compiler also 
includes an auto-tuning driver that can explore the optimization space to tune kernel 
regions [15]. At the application level, researchers applied various tuning mechanisms 
to GPU codes such as sparse matrix-vector multiply [5], stencil computations [11], 
[7], and computational electromagnetics [14]. Vuduc proposed in [12] a statistical 
approach for automatic performance tuning of matrix-matrix multiply operation. 
AtuneRT [13] is an application-independent auto-tuner, which optimizes GPU-
specific parameters such as block size and loop-unrolling degree.  
 
The historic learning approach was applied to the runtime tuning of MPI 
communications in the abstract data and communication library (ADCL) [8], [9].  The 
notion of historic learning is also implemented to a limited extent in FFTW [10], 
namely with a feature called Wisdom. The user can export experiences gathered in 
previous runs into a file, and reload it at subsequent executions. However, the wisdom 
concept in FFTW lacks any notion of related problems, i.e. wisdom information can 
only be reused for exactly the same problem size that was used to generate it.  

5   Conclusions and Future Work 

A historic learning-based performance tuning of OpenACC accelerated applications is 
presented. The performance results obtained by the proposed tuning methodology on 
a finite difference kernel showed a significant performance gain against the compiler-
tuned code and close to the optimal performance that can be obtained with an 
exhaustive search. Furthermore, the time needed for tuning is reduced drastically 
compared to the brute force tuning technique. Nevertheless, the main limitation of this 
approach is its dependency on the historic data that is crucial for a good prediction 
and therefore for achieving a performance close to the tuned code with a brute force 
search. 
Our future work includes the automation of the tuning process including a code 
generator tool along with a tuning engine and its application to a larger spectrum of 
scientific applications and on a variety of accelerator architectures including different 
NVIDIA GPU generations and Intel’s Xeon Phi coprocessors. Other machine learning 
algorithms such as Bayesian classifiers and support vector machines will be explored 
for a better prediction of the most similar problem size to use as a reference to shrink 
the search space. 
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