
SIMD Implementation of a Multiplicative
Schwarz Smoother for a Multigrid Poisson Solver

on an Intel Xeon Phi Coprocessor

Masatoshi Kawai1,2, Takeshi Iwashita3,4

and Hiroshi Nakashima3

1 Graduate School of Informatics, Kyoto University, Japan
2 JSPS Research Fellow

3 ACCMS Kyoto University, Japan
4 JST CREST

Abstract. In this paper, we discuss an efficient implementation of the
three-dimensional multigrid Poisson solver on a many-core coprocessor,
Intel Xeon Phi. We have used the modified block red-black (mBRB)
Gauss-Seidel (GS) smoother to achieve sufficient degree of parallelism
and high cache hit ratio. We have vectorized (SIMDized) the GS steps
in the smoother by introducing a partially SIMDizing technique based
on loop splitting. Our numerical tests demonstrate that our implementa-
tion performs 35.5% better than the conventional mBRB-GS smoother
implementation on Xeon Phi.

1 Introduction

Discrete Poisson equation problems often appear in various computational sci-
ence simulations. When the problem is associated with spatially varying diffusion
coefficients, it is commonly solved using the finite difference method. The finite
difference discretization results in a linear system of equations, that can require
a large amount of computational effort, especially for a large-scale simulation
problem. Consequently, there is a demand for a fast linear solver for the discrete
Poisson equation problem.

A (geometric) multigrid[2] solver is one of the most popular linear iterative
solvers for a linear system derived from the finite difference discretization of the
Poisson equation. It has a convergence property suitable for large-scale problems.
The multigrid solver’s convergence rate is independent from the problem size
when it is applied to the linear system derived from the homogeneous discrete
Poisson equation. Consequently, we have developed a fast geometric multigrid
Poisson solver. In this paper, we have investigated the performance of our solver
on an Intel Xeon Phi coprocessor[7], which is a recently developed processor.

The Intel Xeon Phi coprocessor is based on Intel MIC architecture, and in-
cludes many relatively lower performance cores in its package. The current ver-
sion of the processor, which we have used in our research, consists of 60 cores. Its
peak performance reaches 1TFlops (DP). Moreover, the Xeon Phi coprocessor

has a good performance per watt ratio[3], and its programming model is easier
than that for GPU. Various useful applications and tools developed for general
purpose multi-core processors (such as MPI and OpenMP) can be used, because
each processing core in Xeon Phi is based on X86 architecture. Xeon Phi is cur-
rently used as the accelerator for the host CPU[4], but standalone CPU models
will be developed in the future. Because of these features, it is predicted that
Xeon Phi will play an important role in future computational science.

To efficiently implement a multigrid Poisson solver on the Xeon Phi, we
should consider the following key issues.
1. Large degree of thread parallelism: Xeon Phi has larger numbers of cores

than a general multi-core processor, and it can simultaneously execute 240
threads using Intel Hyper-Threading technology.

2. Data locality: The processor uses a general cache based memory architecture.
Therefore, data locality is important for attaining a high cache hit ratio.

3. Convergence rate: Similarly to implementations on other processors, the con-
vergence rate of the solver has a significant effect on its performance.

4. Vectorization (SingleInstructionMultipleData (SIMD) instructions): Xeon
Phi has a relatively wide SIMD engine. Therefore, SIMD instructions should
be effectively used in the analysis to let the processor achieve its full poten-
tial.

In this paper, we mainly discuss the parallel smoother in the multigrid solver,
paying special attention to these key issues. The other components of the multi-
grid solver can be straightforwardly parallelized and vectorized using a domain
decomposition approach.

In VECPAR 2012, we reported a parallel smoother called the modified block
red-black Gauss-Seidel (mBRB-GS) smoother[6]. It is a multiplicative Schwarz
smoother. The Schwarz smoother is parallelized by applying red-black ordering
to cuboid blocks of the problem domain[5], and multiple Gauss-Seidel (GS) it-
erations are performed in each red or black block. Because the second or later
GS iterations in the block are performed on-cache, high data locality is achieved
in the smoothing step. Moreover, analytical investigation and numerical tests
showed that the smoother attains a sufficient degree of thread parallelism and
fast convergence. Accordingly, the mBRB-GS smoother has desirable character-
istics in three out of the four key issues mentioned above, and it can be regarded
as a candidate for a parallel smoother for the Xeon Phi coprocessor. However,
the innermost loop of the smoother consists of sequential GS steps, and it cannot
be straightforwardly vectorized.

Our solution to this problem is a partial SIMDization (vectorization) of the
GS loop which we split into six simpler loops. Five of the loops are made do-all
and thus SIMDizable. The loop-splitting itself is a classic technique for vector
processors[1]. However, our revisit has various new aspects such as its applica-
tion to the SIMD mechanism and the cache-awareness that is essential for scalar
many-core processors. We conducted numerical tests on the Xeon Phi coproces-
sor to compare the effectiveness of the developed solver with the solver based on
the conventional gridpoint-wise red-black GS smoother that is naturally vector-
ized.

2 Parallelized Multigrid Solver for the Three-Dimensional
Poisson Equation

2.1 Poisson Equation Problem and Multigrid Solver

We used a 7-point finite difference scheme to solve the three-dimensional Poisson
equation. This leads to the following linear system of equations.

Aφ = ρ, (1)

where ρ is the discretized given source, φ is the unknown vector, and A is
the coefficient matrix. The row of the linear system of (1) corresponding to the
grid-point (i, j, k) is written as

ai,j,k ∗ φi,j,k−1 + bi,j,k ∗ φi,j−1,k + ci,j,k ∗ φi−1,j,k + φi,j,k

+ ei,j,k ∗ φi+1,j,k + fi,j,k ∗ φi,j+1,k + gi,j,k ∗ φi,j,k+1 = ρi,j,k(2)

where (i, j, k) represents the grid coordinates. We use the geometric multigrid
method to solve the linear system.

The multigrid method consists of the smoother, residual calculator, restric-
tion and prolongation operators and coarsest grid solver. Among these compo-
nents, we have focused our analysis on the smoother. When we consider the
parallelization of the multigrid solver, the residual calculation, the restriction,
and the prolongation can be straightforwardly parallelized using domain decom-
position. However, it is difficult to parallelize some smoothers. For example, the
GS smoother cannot be naturally parallelized. Moreover, a smoother has a sig-
nificant impact on the performance of the multigrid solver. It greatly affects the
convergence of the solver, and its total computational effort is larger than the
other components. Consequently, this paper mainly discusses the smoother and
its vectorization for the many-core processor.

2.2 Modified Block Red-Black Gauss-Seidel Smoother
In our analysis, we have used the mBRB-GS smoother, which is a multiplicative
Schwarz smoother. In this smoother, the entire grid is decomposed into subdo-
mains based on block red-black (BRB) ordering. The entire grid is divided into
multiple blocks, and then the red-black ordering is applied to the blocks. Each
red or black block is treated as a subdomain in the Schwarz smoother. Multiple
sequential GS steps are performed in each subdomain (red/black block), which is
smaller than the cache size. Consequently, the second and subsequent GS steps
in each subdomain are executed on-cache, which results in high cache hit ratio
(good data locality). The degree of parallelism of the smoother is given by the
number of blocks of each color. In general, the size of the entire grid is larger
than the cache size, and the degree of parallelism is expected to be sufficiently
large. Moreover, it was reported in [6] that the multigrid solver using mBRB-GS
converges more quickly than when using hybrid Jacobi and GS, or red-black GS
smoothers. Consequently, the mBRB-GS smoother is considered to be a promis-
ing parallel smoother candidate for the multigrid solver on the Intel Xeon Phi
coprocessor.

3 Efficient Implementation of the GS Smoother on Xeon
Phi

To develop an efficient multigrid Poisson solver on the Xeon Phi coprocessor,
we should consider the vectorization (SIMDization) of the smoother in addition
to the parallelization. This is because of the relatively wide SIMD engine of the
coprocessor compared with general multi-core processors. However, the mBRB-
GS smoother uses GS iterations, which cannot be naturally vectorized. We now
introduce an implementation method that makes a compiler generate a partially
SIMDized binary code.

Alg. 1 shows the ordinary Fortran implementation of the GS method. When
it is used in the mBRB-GS smoother, NX, NY and NZ correspond to the block
sizes along the x, y and z axes, respectively.

In the program code, the innermost loop has a loop carried dependence
caused by the term c(i, j, k) ∗ phi(i − 1, j, k) (highlighted in red), which usu-
ally prevents the compiler from SIMDizing the loop.

Alg 1. Ordinary implementation of the GS method

1 do k = 1, NZ
do j = 1, NY
do i = 1, NX !This loop is not SIMDized

phi(i,j,k)= rho(i,j,k) &
+ a(i,j,k)*phi(i,j,k-1) + b(i,j,k)*phi(i,j-1,k) &

6 + c(i,j,k)*phi(i-1,j,k) + e(i,j,k)*phi(i+1,j,k) &
+ f(i,j,k)*phi(i,j+1,k) + g(i,j,k)*phi(i,j,k+1))

enddo
enddo

enddo

Although this dependence is essential to the GS method, it does not neces-
sarily inhibit the SIMDization of the whole loop. In fact, as shown in Alg. 2, if we
apply loop-splitting so that we have six separated loops for each of the additive
terms referencing phi, five loops out of the six are free from the loop carried de-
pendence and thus easily and well SIMDized. Note that the loop-splitting does
not always improve the loop performance because of additional operations, which
in this case are load/store operations of the scratchpad array tmp. However, the
negative impact is expected to be minor and the following positive effects are
also possible.

First, the cost of the additional accesses to tmp is minimized by tuning
the size NX so that tmp is always resident in the first level cache. For the
mBRB-GS smoother that has an inherent blocking feature, this tuning is almost
automatic and does not require further cache-aware blocking. Second, each of
the five dependence-free loops is so simple that all compilers can easily grasp
the structure of the loop body, so it is strongly expected that the loop body is
efficiently SIMDized, even with the restricted SIMD architecture of Xeon Phi.
That is, the relatively small number of streams (four for the first and three

for others) makes it feasible for the compilers to exploit SIMD load/store and
alignment instructions, while the common right-hand side structure of x + y ∗ z
perfectly fits to the fused multiply-add instructions that are the other source of
the high peak performance of Xeon Phi.

Alg 2. Partially SIMDized implementation of the GS method

do k = 1, NZ
do j = 1, NY
!$DEC SIMD
do i = 1, NX

5 tmp(i) = rho(i,j,k) + a(i,j,k)*phi(i,j,k-1)
enddo
!$DEC SIMD
do i = 1, NX
tmp(i) = tmp(i) + b(i,j,k)*phi(i,j-1,k)

10 enddo

!There are SIMDized phi(i+1,j,k), phi(i,j+1,k) and phi(i,j,k+1) loop.

do i = 1, NX !This loop is not SIMDized

15 phi(i,j,k) = tmp(i) + c(i,j,k)*phi(i-1,j,k)
enddo

enddo
enddo

4 Numerical Tests

4.1 Numerical Test Conditions

We examined the performance of the multigrid Poisson solver with mBRB-GS
using an implementation method for partial SIMDization on an Intel Xeon Phi
7120 coprocessor. The fundamental specifications are listed in Table 1. On the
coprocessor, up to 240 threads can run on 60 cores. The program code was writ-
ten in Fortran compiled by Intel Composer 14.0.0 with the options -O3 -openmp
-mmic -no-opt-prefetch. It was run on Xeon Phi using its native execution mode.
The test problem had 5123 grid points. The multigrid solver has converged when
the relative residual norm was less than 10−7. In our numerical tests, we evalu-
ated the performance of the multigrid Poisson solver with red-black GS (RB-GS),
mBRB-GS based on the implementation methods in Alg. 1 and 2. The block size
of the mBRB-GS smoother NX × NY × NZ was 512 × 2 × 2, and there were
two GS iterations for each block in a smoothing step.

4.2 Performance Evaluation of Proposed Implementation Method

Fig.1 shows the relative speedup of calculation time of the entire mulgitrid solver
compared with the sequential mBRB-GS (Alg. 1). These results confirm that

Table 1. Specifications of Xeon Phi

Processor

Model 7120(KnightsCorner)
Number of cores 61
Clock frequency 1.24GHz
L1D-cache size 32KByte/core

L2-cache size 512KByte/core

Memory
Technology GDDR5

Size 16GByte

mBRB-GS outperforms RB-GS on numerical tests conducted on the Xeon Phi
coprocessor. In our analysis, RB-GS is implemented using stride memory access.
This is one of the most popular implementation methods for RB-GS, because it
does not require the array to be reordered for the unknowns. This is convenient
for other multigrid components such as the restriction. However, stride memory
access is not advantageous in terms of the cache hit ratio when compared with
the contiguous method. Consequently, RB-GS is inferior to mBRB-GS in terms
of performance, although it can be naturally vectorized. This result is similar to
the numerical results on a general multi-core processor [6].

Next, we compared the two implementations of mBRB-GS. Although the par-
tially SIMDized GS implementation (Alg. 2) outperforms the ordinary method
(Alg. 1) on the numerical test using 240 threads, it is inferior to the ordinary
implementation when using 120 or less threads. Using the Intel Vtune Ampli-
fier, we found that Alg. 2 suffers from two types of processor stalls. One is
the VPU STALL REG event detected when a read-after-write hazard stalls the
SIMD instruction pipeline. The other is the PIPELINE AGI STALL that corre-
sponds to the stall of a load/store instruction. It is caused by the latency of the
corresponding instruction to provide (a source of) the address to be accessed.
We consider that the number of stalls increases because of the reduced number
of instructions involved in a loop in Alg. 2. The hyper-threading technology re-
duces the impact of these stalls on the performance, by interleaving instructions
from multiple threads to hide the latency between the pair of instructions. Thus,
Alg. 2 performs 19.1% better than Alg. 1 in the case of 240 threads.

The other important observation obtained from our analysis of Alg. 2 us-
ing the Vtune Amplifier is that the ratio of SIMD instructions to all executed
instructions is only 25.9%. This is much smaller than we expected for the five
simple SIMDizable loops. We examined the object code for the loops and found
that a significantly large portion of instructions in the loop body is occupied by
calculations of the addresses of each element of the three or four arrays referred
to in each loop. That is, Intel Composer generates fairly redundant codes for ad-
dress calculations of three-dimensional array elements. This potential inefficiency
might be hidden under the powerful out-of-order superscalar mechanism of or-
dinary Xeons with multiple integer units which simultaneously works together
with SIMD floating-point units. However, this inefficiency is revealed when it is
executed on Xeon Phi, because of its in-order two-way superscalar mechanism.
This means that only one integer instruction stream can be processed when it

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

R
el

at
iv

e
sp

ee
du

p
(b

as
ed

 s
eq

ua
nt

ia
l m

B
R

B
-A

lg
1)

Number of threads

mBRB-Alg2
mBRB-Alg1

RB-GS

Fig. 1. Comparison of RB and two implementations of the mBRB-GS smoother

has instructions tightly dependent on each other and/or the SIMD floating-point
unit is in use.

To reduce the overhead of the address calculation, we made the three-dimensional
arrays one-dimensional by applying the well-known array flattening technique.
Then, most operations are made loop-invariant and are explicitly moved outside
the loop body. This handmade optimization significantly reduced the number of
non-SIMD instruction executions for address calculations, resulting in a much
higher SIMD instruction ratio of 53.8%. Then, the improvement of the SIMD
instruction ratio directly effected the higher performance of three mBRB-GS
implementations, as shown in Fig.3. As the figure clearly shows, Alg. 2 with ar-
ray flattening improves the performance of the 240-thread case and outperforms
Alg. 1 by 35.5%. It also improves performance when using 120 threads or less,
and is the best of the three implementations in all cases.

Finally, we briefly compared the performances of Xeon Phi and an ordinary
multi-core HPC server node of dual Xeon E5-2670 SandyBridge processors. We
measured the server node performance using Alg. 1 and Alg. 2 and found that
the differences between them are insignificant. This is most likely because of
the narrower 256-bit wide SIMD mechanism and the powerful out-of-order su-
perscalar mechanism. On the other hand, an important observation is that the
single Xeon Phi coprocessor outperforms the dual-Xeon server using 16 threads
by 34.1%. This demonstrates its high potential, even for hardly-SIMDizable ker-
nels. It also shows the importance of architecture-aware code tuning, which we
expect to be incorporated into automated optimizations of future compilers for
many-core processors with wider SIMD mechanisms.

5 Conclusion
In this paper, we discussed an efficient three dimensional multigrid Poisson
solver, working on an Intel Xeon Phi coprocessor. To effectively use the SIMD
instructions of Xeon Phi, we introduced the partially SIMDized method for the
GS iterations in the multigrid solver, using the mBRB-GS smoother. In our

 0

 20

 40

 60

 80

 100

 0 50 100 150 200 250

R
el

at
iv

e
sp

ee
du

p
(b

as
ed

 s
eq

ua
nt

ia
l m

B
R

B
-A

lg
1)

Number of threads

mBRB-Alg2_1D-array
mBRB-Alg2
mBRB-Alg1

Fig. 2. Comparison of three implementations of the mBRB-GS smoother for the multi-
grid Poisson solver

implementation, the innermost loop is split into six loops, each of which corre-
sponds to one additive term in a 7-point finite difference scheme. Because five of
these loops are free from loop carried dependence, they can be SIMDized. The
loop-splitting itself is a classic technique for vector processors. However, our re-
visit has various new aspects such as its application to the SIMD mechanism and
the cache-awareness that is essential for scalar many-core processors. Moreover,
using detailed performance profiling and analysis, we found that the reduction of
address calculations in the loop body by using array flattening significantly im-
proved performance. Overall, the partially SIMDized implementation attained a
35.5% better performance than the conventional implementation of the mBRB-
GS smoother in the 240-thread execution on Xeon Phi.

References

1. Allen, R., Kennedy, K.: Automatic translation of fortran programs to vector form.
ACM Trans. Program. Lang. Syst. 9(4), 491–542 (Oct 1987)

2. Briggs, W., Henson, V., McCormick, S.: A Multigrid Tutorial Second Edition. SIAM,
Philadelphia , PA (2000)

3. Dokulil, J., et al: High-level support for hybrid parallel execution of c++ applica-
tions targeting intel R© xeon phi coprocessors. Procedia Computer Science 18, 2508–
2511 (2013)

4. Heinecke, A., et al: Design and implementation of the linpack benchmark for sin-
gle and multi-node systems based on intel R© xeon phi coprocessor. In: Parallel &
Distributed Processing. pp. 126–137. IEEE (2013)

5. Iwashita, T., Shimasaki, M.: Block red-black ordering: a new ordering strategy for
parallelization of ICCG method. Int. J. Parallel Prog. 31, 55–75 (2003)

6. Kawai, M., Iwashita, T., Nakashima, H., Marques, O.: Parallel smoother based on
block red-black ordering for multigrid poisson solver. High Performance Computing
for Computational Science - VECPAR 2012 (2013)

7. Reinders, J.: An overview of programming for intel R© xeon processors and intel R©
xeon phi coprocessors (2012)

