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Abstract. Krylov Subspace Methods (KSMs) are widely used for solv-
ing large scale linear systems and eigenproblems. However, the com-
puting of Krylov subspace basis for KSMs suffers from its intensive
blocking scalar product computation and communication, especially in
large clusters with accelerators like GPUs. In this paper, a Hyper Graph
based communication optimization is applied to Arnoldi and incomplete
Arnoldi methods of forming Krylov basis, and we compare their per-
formance with classic Arnoldi methods within a CPU-GPU framework.
Results show the benefits from optimization and its drawbacks which
require further integration of auto-tuning technologies.
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1 Introduction

Krylov Subspace Methods (KSMs) (such as GMRES and Arnoldi method) are
kinds of iterative solvers frequently used in large scale linear problems. In KSMs,
a basic and important part is to generate an orthogonal basis for the Krylov sub-
space. Arnoldi method is commonly adopted to form the basis, but it is proved
to be time-consuming due to its blocking scalar product from its orthogonaliza-
tion process. In the parallel framework, the matrix-vector product in Arnoldi



method also causes a heavy communication cost. It is even worse in clusters
equipped with accelerators like GPU, since the data exchange among GPUs is
still expensive. Thus, efforts are made to reduce the communication in KSMs.
Ghysels et al. [1] has proposed a pipelined variation of GMRES, hiding the global
communication latencies by overlapping them with other communication or com-
putations. Hoemmen [2] has implemented a Communication Avoiding version of
the Power method for computing non-orthogonal bases, which replaces data ex-
change by redundant local computation. In this paper, we apply a Hyper Graph
based communication optimization to parallel Arnoldi and incomplete Arnoldi
orthogonalization methods. Together with the non-optimized Arnoldi and in-
complete Arnoldi methods, the four algorithms are tested within a CPU-GPU
framework. Our evaluation and comparison of performance concentrate only on
the time spent in the computing of a Krylov subspace basis. While the number
of restarts and the total time for obtaining a converged solution also depend
on conditions such as the features of target matrices, which makes it difficult
to have a general analysis. For example, methods like incomplete Arnoldi could
generate fast a less orthogonal basis but later require more iterations and time
for obtaining a convergent solution.

2 Methods for Generating Krylov Subspace Basis

In order to obtain a vector basis for the Krylov subspace, the Gram-Schmidt or-
thogonalization based Arnoldi process is commonly used. This Arnoldi method
could be implemented in a parallel framework, and we will also study the incom-
plete Arnoldi method and two communication optimized Arnoldi and incomplete
Arnoldi methods.

2.1 Arnoldi

First, we focus on a parallel version of the Arnoldi algorithm that uses a Clas-
sic Gram-Schmidt process to form a full-sized orthogonal subspace basis. We
evaluate its computational complexity in Equation [I]
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where r is the size of Krylov subspace, p is the number of MPI tasks, n is
the dimension of test square matrix and o is the density of nonzero entries. « is
the time of an arithmetic operation; (3 is the latency of the sending (receiving)
messages, and G is the time per byte (Gap between sending or receiving long
message).The term (2aonr)/p corresponds to the time consumed by matrix-
vector product to form a non-orthogonal basis. The term [3anr?+(2p+1)anr]/2p
represents the scalar product from the orthogonalization process, and the last
term r[2860(p) + nG] is the cost of communication among MPI processes.



2.2 TIArnoldi(q)

Secondly, we view the IArnoldi(q) which is based on the Classic Gram-Schmidt
process. Meanwhile, it truncates the number of orthogonal vectors so that each
new generated basis vector should only be orthogonal to its g previous basis
vectors [3]. We also evaluate its complexity in Equation

TIArnoldi (7“7]9, n,o, Q) = 2agnr + anr(p—;3q+2) +r [259([)) +nG (2)

The truncation accelerates the second term in Equation[I] by replacing it with
[anr(p + 3¢ + 2)]/p. This term is only proportional to the r and thus greatly
reduces the time in the case of large subspace. However, the truncation also
reduces the orthogonality of the subspace basis, which may increase the number
of iterations to obtain a convergent solution.

2.3 ArnoldiHG

Similarly, ArnoldiHG is a communication optimized version of Arnoldi. It uses a
Hyper Graph model [4] to describe and optimize the communication cost in the
matrix-vector multiplication Y = AX of Arnoldi methods. The matrix A is par-
titioned by rows in every MPI task, and every MPI task requires communication
with other tasks to update Y for the next iteration. Thus, the communication
optimization could be abstracted as a problem of hypergraph (row based) par-
tition.

The modeled complexity in Equationshovvs that the last term r[nocGO(p)+
BO(p?)] is the communication part after applying optimization which is much
smaller than that of original Arnoldi implementation.
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2.4 TArnoldiHG(q)

IArnoldiHG(q) is the Hyper Graph based communication optimized IArnoldi(q).
Due to the truncation and the communication optimization, the second and third
terms in Equation [4] show a significant benefit in execution time.

TIA'rnoldiHG (Tv p,q,n, O-) = 204;1’7,7‘ + anr(p;3q+2) +r I:nUGQ(p) + ﬂe(pz) (4)

2.5 Comparison of four Algorithms

In Table [I} we compare the features of the four algorithms. Both of them adopt
the Classic Gram-Schmidt process (CGS). Though it is less numerically sta-
ble than Modified Gram-Schmidts (MGS), it is more suitable within a paral-
lel Arnoldi process. ArnoldiHG and IArnoldiHG(q) have optimized communi-
cation, leading to better scalability than the others. However, IArnoldi(q) and
TArnoldiHG(q) have a weak orthogonality, which requires methods like Reorthog-
onalization to improve the basis.



Table 1: Comparison of 4 parallel Arnoldi Algorithmic Implementations

Algo Name Arnoldi |ArnoldiHG|IArnoldi(q)|IArnoldiHG(q)
Orthogonality Full Size| Full Size |(q previous | ¢ previous
Optimized Communication| NO Yes NO Yes
Execution Time High Medium | Medium Low
Strong Scalability Medium High Medium High

3 Experimentation

The four algorithms described in Table [1] are implemented and tested within a
CPU-GPU framework. The sparse matrix A is partitioned by rows in a blockwise
way. Each partition is assigned to a host CPU process to handle the communi-
cation and another GPU to handle local computation task.

3.1 The Test Matrices

The experiment has tested the four Algorithms on sparse matrices with differ-
ent structures. First, we choose the Continuous Diagonal Matrix (Figure [1f (a)),
where each process’s submatrix only communicates with its neighbour pro-
cesses. Secondly, we adopt the Equidistributed Diagonal Matrix (Figure [1f (b)),
where nonzero entries are distributed evenly across all columns. Finally, we use
two real sparse matrices of the sparse matrix collection from the University of
Florida. We also use two different Sparse Matrix formats. One is the Compressed

o
X\ i
2

w W w0 w0 0

2

%

o

%

o

-q

®

BN

R sk s m e s

= Zoas e e

(a) C-Diagonal (b) Equi-Diagonal

(d) Ldoor

Fig. 1: (a) Continuous Diagonal Matrix, size of 960000, diagonals of 33; (b) Equidis-
tributed Diagonal Matrix, size of 960000, diagonals of 33; (c) Audikwl, size of 943695,
nonzeros of 77651847; (d) Ldoor, size of 952203 nonzeros of 42943817

Sparse Row format (CSR format), the other is the ELLPACK format, and we
study the potential impact of these formats in the overall performance of the
implementations



3.2 The Krylov Subspace Size

During the construction of the subspace basis, one of the most important param-
eters is the subspace size r (See Section . The value of r would greatly affect
the performance of Arnoldi process. Normally, a small value of r is preferred in
the cases of IArnoldi(q) and IArnoldiHG(q), because the loss of orthogonality
would be reduced. In the test, we also use some large values of r to have a good
range of tests and study the influence of the subspace size over the performance
of the algorithmic implementation.

4 Results and Analysis

The results are from tests performed on the GPU cluster of machine Poincare
from Maison de la Simulation. The machine is composed of IBM’s iDataPlex
dx360 M4 servers. Its GPU cluster has four nodes, and each of them is equipped
with two processors of Sandy Bridge E5-2670, and two GPU Tesla K20 (CUDA
Capability 3.5, 4.8 G memory for each GPU); Each node also has shared memory
of 64G. The connection among nodes uses the QLogic QDR InfiniBand solution.
The GPU codes are compiled by the CUDA version 5.5, and the CPU codes are
compiled by openMPI version 1.6.3.

4.1 Different Structure of Input Matrix

The results in Figure [2| show their strong scalability performance in total exe-
cution time, which are coherent with the complexity analysis we made in Sec-
tion [2 The computation time of (2aonr)/p and [3anr? + (2p + 1)anr]/2p (or
[anr(p+3g+2)]/p in incomplete Arnoldi) reduces when p increases. For the com-
munication part, the time increases with the process number p, but also depends
on the structure of matrices. In Figure [2[ (a), MPI process in C-Diagonal matrix
only has communication with its neighbours, making the communication part
negligible (best case), so ArnoldiHG outperforms Arnoldi, and IArnoldiHG(q)
is better than IArnoldi(q).

In Figure [2 (b) we find that the communication optimized methods have
lost their advantage in strong scalability. In Equation [4) their communication
cost is r[noGO(p) + BO(p?)], while for Arnoldi algorithm, this part becomes
r[280(p) + nG]. Here G has the order of 107% ~ 107 s, while 3 has the order
of 1076 ~ 10~*s. When n is relatively small, the former is of the order of SO (p?),
while the latter is of the order of SO (p). Thus, the execution time of optimized
methods would surpass that of Arnoldi in the worst case (e.g. Equi-Diagonal
Matrix). In Figure [2| (¢) and (d), the performance of the optimized algorithms
are between that of Figure [2| (a) and Figure |2 (b).

4.2 Varying the size of the Krylov subspace

In Figure|3] IArnoldi(q)’s benefit over Arnoldi decreases when the size of Krylov
Subspace goes down. It can be explained by a difference term O[(r — ¢)anr] from
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Fig. 2: The Execution time for Strong Scaling tests with 4 different sparse matrices.
The Krylov subspace is fixed to 256, we use the CSR matrix format and double precision
arithmetic



the scalar product part of the two methods. The advantage of communication
optimized methods is unaffected by the change of Krylov subspace size. However,
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Fig. 3: Execution time evaluation of 4 algorithms for 960000 x 960000, 33 diagonals
C-Diagonal Matrix, with format CSR, double precision and 3 different Krylov Size:
256, 64 and 8

the subspace size may affect the number of iterations for obtaining a convergent
solution. Thus, an auto-tuning strategy for dynamically optimizing the size of
the subspace is required [5].

4.3 Impact of Sparse Matrix Format

In [6], the influence of formats on the performance of SpMV has been evaluated.
Similarly, we compare the two formats CSR and ELLPACK in our test. In Figure
[] the format CSR runs slightly better than the ELLPACK for matrix Audikwl,
and we observed the same phenomena from tests on the other three matrices.

5 Conclusion

In this paper, we presented a Hyper-Graph based parallel implementation of
a Krylov based methods using optimized communication schemes. The perfor-
mance results corroborate our theoretical performance models (Eqs{1}f2f3}l4]) and
our test-cases studied the influence of the Krylov subspace size, the sparse ma-
trix structure and storage format on the performance of the algorithmic imple-
mentations on CPU-GPU platforms. Furthermore, we arrived on the following
concluding remarks; 1) The hyper graph based optimization is effective for dif-
ferent Krylov subspace sizes and different sparse matrix formats. While the in-
complete Arnoldi method with our optimization performs best among the four
algorithmic implementations, it still needs an auto-tuning strategy to optimize
parameters like subspace size and number ¢ of truncated vectors in runtime.
2) The hyper graph optimized methods do not perform well in sparse matrices
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Fig. 4: Execution time of 4 algorithms for matrix Audikw1 using CSR and ELLPACK
format. The Krylov Subspace size is 256 and a double precision is used

with certain structures. A high level auto-tuning strategy is required to choose
optimized or non-optimized communication methods according to the inputs.
3) Communication Avoiding strategy shall be integrated to further eliminate the
communication bottleneck in parallel Krylov basis computing. To attain fur-
ther improvements, we will consider the adoption of Communication Avoiding
strategies 2] in our future work.

References

. Ghysels, P., Ashby, T.J., Meerbergen, K., Vanroose, W.: Hiding global communica-

tion latency in the gmres algorithm on massively parallel machines. STAM journal
on scientific computing 35 (2013) C48-C71

. Hoemmen, M.: A communication-avoiding, hybrid-parallel, rank-revealing orthog-

onalization method. In: Parallel Distributed Processing Symposium (IPDPS), 2011
IEEE International. (2011) 966-977

Saad, Y., Wu, K.: Dqgmres: a direct quasi-minimal residual algorithm based on
incomplete orthogonalization. Numerical Linear Algebra Appl 3 (1996) 3-329
Catalyurek, U.V., Aykanat, C.. Hypergraph-partitioning based decomposition for
parallel sparse-matrix vector multiplication. IEEE trans. on parallel and distributed
computing 10 (1999) 673-693

. Katagiri, T., Aquilanti, P.Y., Petiton, S.G.: A smart tuning strategy for restart

frequency of gmres(m) with hierarchical cache sizes. In: VECPAR. (2012) 314-328
Hugues, M., Petiton, S.: Sparse matrix formats evaluation and optimization on a
gpu. In: High Performance Computing and Communications (HPCC), 2010 12th
IEEE International Conference on. (2010) 122-129



	Toward Auto-tuned Krylov Basis Computations with minimized Communication on Clusters of Accelerators
	Langshi CHEN,Serge PETITON,Leroy DRUMMOND,Maxime HUGUES

