
A Hybrid Approach for Parallel Transistor-Level
Full-Chip Circuit Simulation

Heidi K. Thornquist, Sivasankaran Rajamanickam

Sandia National Laboratories??,
Albuquerque, New Mexico.

Abstract. The computer-aided design (CAD) applications that are fun-
damental to the electronic design automation industry need to harness
the available hardware resources to be able to perform full-chip simula-
tion for modern technology nodes (45nm and below). We will present a
hybrid (MPI+threads) approach for parallel transistor-level transient cir-
cuit simulation that achieves scalable performance for some challenging
large-scale integrated circuits. This approach focuses on the computa-
tionally expensive part of the simulator: the linear system solve. Hybrid
versions of two iterative linear solver strategies are presented, one takes
advantage of block triangular form structure while the other uses a Schur
complement technique. Results indicate up to a 27x improvement in total
simulation time on 256 cores.

1 Introduction

Circuit simulation is a technique for checking and verifying the design of electri-
cal and electronic circuits and systems prior to manufacturing and deployment.
Circuit simulators use a detailed, transistor-level description of the circuit to
achieve relatively accurate performance characteristics. For integrated circuit
(IC) design, where probing the behavior of internal signals is extremely difficult,
time-domain circuit simulation is an essential, yet expensive, part of the CAD
process. Efficient, scalable simulation tools are even more important for simula-
tion of modern technology nodes, where parasitic effects can increase the device
count in an integrated circuit by an order of magnitude or more. Traditional
transistor-level simulation, made popular by the Berkeley SPICE program [8],
becomes impractical beyond tens of thousands of devices, due to the reliance on
sparse direct linear solvers [3]. Many attempts have been made to allow for faster,
large-scale circuit simulation with Fast-SPICE tools or hierarchical simulators.
Unfortunately, the approximations inherent to these simulation approaches can
break down under some circumstances, rendering such tools unreliable. With
the transition to manycore processors, parallel transistor-level simulation has
received more interest from the electronic design automation community.

?? Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin, for the United States Department of Energy’s
National Nuclear Security Administration under contract DE-AC04-94AL85000.



Fig. 1. General circuit simulation flow

Our contributions in this paper are: a scalable and robust transistor-level cir-
cuit simulation approach for large and challenging problems that uses a hybrid
version of the BTF-based preconditioner [10] or a multithreaded Schur comple-
ment computation within a hybrid (direct+iterative) solver [9], integration of
these linear solvers to a distributed memory parallel circuit simulator, Xyce [5],
and a thorough comparison with other serial, multithreaded and distributed
solvers for the full simulation. Our hybrid solvers can achieve a parallel speedup
of up to 27x when compared with fastest third party solver. A proof of concept
MPI-only Schur complement solver was presented earlier in References [1, 11].

2 Xyce Framework

Xyce is a transistor-level simulator and adheres to a general flow, as shown
in Fig. 1. The circuit is described by a netlist file, which lists the individual
components and how they are connected together. This list of devices and in-
terconnectivity is transformed via modified nodal analysis (MNA) into a set of
nonlinear differential algebraic equations (DAEs)

dq(x(t))
dt

+ f(x(t)) = b(t), (1)

where x(t) ∈ RN is the vector of circuit unknowns, q and f are functions repre-
senting the dynamic and static circuit elements (respectively), and b(t) ∈ RM is
the input vector.

Time-domain simulation, or transient analysis, solves the nonlinear DAEs (1)
implicitly through numerical integration methods, resulting in the nested solver
loop in Fig. 1. Any numerical integration method requires the solution to a
sequence of nonlinear equations, F (x) = 0. Typically, Newton’s method is used
to solve these nonlinear equations, which generates a sequence of linear systems

Ax = b (2)

with conductance, G(t) = df
dx (x(t)), and capacitance, C(t) = dq

dx (x(t)), matrices.
The computational expense in large-scale circuit simulation is dominated by

repeatedly solving linear systems of equations, which are at the center of the
nested solver loop (Fig. 1). These matrices are typically sparse, non-symmetric
and are often ill-conditioned. Direct sparse linear solvers [3] are the industry
standard approach because of their robustness. When the linear system has
hundreds of thousands of unknowns or more, direct solvers become less practi-
cal. Despite the problems inherent to circuit matrices, preconditioned iterative
solvers have the potential to be a scalable solution method for large-scale linear
systems. Standard preconditioners, such as multigrid and domain decomposition



do not generally work well for circuit problems. It has been shown that effec-
tive preconditioners can be generated by using the block triangular form (BTF)
matrix structure often found during DC analysis [10]. Unfortunately, with these
preconditioning techniques, the number of iterations to solve the linear system
will increase with the number of MPI processes. A hybrid approach controls
the number of iterations resulting in better performance and Schur complement
approaches have been shown to work well as preconditioners [1, 2].

3 Linear Solver Strategies for Circuit Simulation

This section describes a preconditioner and a Schur complement solver that is
effective for circuit problems, their limitations in a distributed memory only
implementation and hybrid techniques that improve scalability. For full-chip
circuit simulation, where the number of devices can reach into the millions,
these scalable hybrid linear solver strategies are imperative.

BTF-based Preconditioned Iterative Method: In general, a good precon-
ditioner for the linear system (2) is inexpensive to apply and approximates the
coefficient matrix A well. Unfortunately, these two properties often conflict. So,
like with many applications, domain-specific structure must be leveraged to de-
velop an effective preconditioner for circuit simulation. The motivation behind
the BTF-based preconditioning technique is the observation that the conduc-
tance matrix G(t) is often reducible when t = 0, and sometimes may be permuted
to a block triangular form with small diagonal blocks [3, 10].

This linear solution strategy has several steps and, in the end, generates a
block Jacobi preconditioner for the Generalized Minimal Residual (GMRES)
method. The first step, singleton removal, removes the dense rows and columns
that typically result from ideal power supplies and ground nodes, which are
common to digital circuits [2]. These dense rows (or columns) correspond to sin-
gleton columns (or singleton rows) with one and only one non-zero entry. These
matrix features have the potential to increase communication costs dramatically
and can easily be removed from the linear system in a pre-processing (singleton
rows) or post-processing (singleton columns) step.

The second step of this linear solution strategy is the permutation of the
matrix to block lower (or upper) triangular form. This permutation is determined
in two steps: first a maximum matching permutation to generate a matrix with
a zero-free diagonal, and second a topological sort which finds the strongly-
connected components of the associated directed graph. We leverage the fact
that circuits often give many small diagonal blocks to use the BTF structure
in a novel way. A condensed (block) graph is constructed by contracting all the
vertices within each diagonal block into a single vertex. This results in a coarse
representation of the original graph that is often much smaller.

The matrix partitioning is the third step in this linear solution strategy. We
partition the condensed (block) graph into parts that are only loosely connected
using hypergraph partitioning [4]. These three steps produce a global matrix
reordering that is used to generate a block Jacobi preconditioner for GMRES.



Fig. 2. Graph/Hypergraph based ordering of the sparse linear system for parallelism
in ShyLU with unsymmetric ordering (left) and symmetric ordering (right).

The number of diagonal blocks in the preconditioner is the number of MPI
processes used. Since a block Jacobi preconditioner only applies the inverse of
these diagonal blocks, no parallel communication is required to perform the
factorization and solve, which makes it a scalable preconditioning technique.
However, the number of GMRES iterations needed to solve the linear system to
a given tolerance will increase with the number of subdomains (MPI ranks). This
effectively limits the number of MPI processes that can be used for any given
problem. Therefore, it is necessary to take advantage of intra-node parallelism for
accelerating local computations. We use the multithreaded kernels in the Epetra
package of Trilinos for the multithreaded sparse matrix-vector multiplication.

ShyLU: ShyLU is a hybrid linear solver designed to be a black-box algebraic
solver [9]. It is hybrid in both the parallel programming sense - using MPI
and Threads - and in the mathematical sense - using features from direct and
iterative methods. ShyLU was designed to be a subdomain solver in a domain
decomposition framework within Trilinos [9]. However, it can also be used as a
global Schur complement solver. We introduce hybrid parallelism in the Schur
complement computation of ShyLU for it to be more scalable for large circuits.

Let Ax = b be the system of interest. Suppose A has the form

A =

„
D C
R G

«
, (3)

where D and G are square and D is non-singular. The Schur complement after
D is factored is S = G−R ∗D−1 ∗ C. Solving Ax = b then consists of solving„

D C
R G

«
×

„
x1

x2

«
=

„
b1

b2

«
(4)

by solving Dz = b1 and using the z in Sx2 = b2 −Rz and Dx1 = b1 − Cx2.
ShyLU uses hypergraph partitioning to permute the matrix into the bor-

dered block diagonal form shown in Figure 2. Each block diagonal in the per-
muted matrix corresponds to a MPI rank and factored using a direct solver. An
approximate Schur complement is used to compute a preconditioner for an itera-
tive method to solve for the Schur complement. The approximation is computed
using either dropping or a probing method for a fixed pattern. We will use the
former in this paper.

The first expensive step in ShyLU is the factorization of block diagonals.
For all the problems in this paper we use KLU [3] a simplicial direct solver to



factor the block diagonals. The other expensive step in ShyLU is computing the
approximate Schur complement. Computing the approximate Schur complement
is completely local within an MPI rank in ShyLU and is a good candidate for
hybrid parallelism. It involves triangular solves in D−1 ∗ C computation of the
Schur complement and a matrix vector multiply. It can also be formulated as
a matrix matrix multiply. ShyLU uses the former formulation. The triangular
solve in this particular case has multiple right-hand sides where the right-hand
sides are themselves sparse columns of C. We have modified KLU in order to
compute the approximate Schur complement as described below.

The hybrid Schur approximation uses a triangular solve with multiple right-
hand sides to compute a block column of the Schur complement in parallel.
KLU’s triangular solve was optimized for multiple right-hand sides using vec-
torization. We have introduced the multithreaded triangular solves for block
columns in addition to the existing vectorization. The second change is to ex-
ploit the sparsity in the right-hand side by avoiding the additional floating point
operations in the triangular solve. The importance of exploiting the sparsity in
the triangular solves has been observed before [12]. However, it is also impor-
tant to exploit the BTF structure in the factorization step for circuit problems.
The BTF here is within the direct solver and different from BTF-based precon-
ditioner in Section 3. As KLU uses the BTF structure in its factorization and
triangular solve we exploit the sparsity within the triangular solve corresponding
to the diagonal blocks of the BTF structure. Note that the numeric factorization
of KLU is still sequential. In summary, we have introduced a multithreaded tri-
angular solve with block right-hand sides that exploits sparsity in the right-hand
side within the BTF structure.

4 Performance Results

This section presents results for the proposed hybrid approaches for parallel sim-
ulation of challenging problems. Results presented in this paper are generated
using Xyce (post release 5.2.1) and Trilinos(10.10.1). The test machine is a capac-
ity cluster, with 272 compute nodes, where each node has a 2.2 GHz AMD quad
socket/quad core processor and 32GB RAM. Xyce, Trilinos, SuperLU v4.3 [6],
and SuperLU DIST v2.5 [7] are compiled using Intel 11.1 compilers, where the
Intel MKL 11.1 provides the BLAS/LAPACK and PARDISO libraries. The in-
tegrated circuits selected for these tests are of varying scales and the simulation
challenges even the sparse direct linear solvers. Table 1 partially describes the
circuits used in the numerical experiments. All three of these are proprietary
application-specific integrated circuits (ASICs).

Sparse Direct Solver Performance: The circuits selected for these experi-
ments are small enough that sparse direct solvers are still practical. Therefore,
we will start by looking at performance results from the state-of-the-art sparse
solvers KLU, PARDISO, SuperLU, and SuperLU DIST in Table 2. KLU and
SuperLU are serial, while the parallel codes are run on 16 cores. The results
illustrate the difficulty of these simulations. The only solver that consistently



Table 1. Circuits: matrix size(N), capacitors(C), MOSFETs(M), resistors(R), voltage
sources(V), diodes (D).

Circuit N C M R V D

ckt1 116247 52552 69085 76079 137 0

ckt2 688838 93 222481 176 75 291761

ckt3 1944792 400234 211486 795827 36100 199992

Table 2. Total linear solve time (sec.) for various sparse direct solvers; (-) indicates
simulation failed to complete. The number of threads/MPI processes is in parantheses.

ckt1 ckt2 ckt3

KLU 9381.3 7060.8 14222.7

PARDISO (16) 715.0 6690.5 -

SuperLU - - 72176.8

SuperLU Dist (16) - - -

enables a transient simulation to complete is KLU. PARDISO performs well,
beating KLU on ckt1, and ckt2, but fails to complete the DC analysis phase for
ckt3. SuperLU DIST is designed for problems with supernodal structure which
is not present in any of our test cases. We believe its static pivoting choice causes
the problems in completing the simulation. Note that these are representative
simulations. Real simulations could be order of magnitude longer. We will com-
pare our approaches to KLU in the rest of the paper.

Hybrid Linear Solver Performance: The linear solver dominates the sim-
ulation time for circuits ckt1 and ckt3 (> 90%), while it is about half the total
simulation time for ckt2. Thus, these circuits are the most useful in determining
the effectiveness of the hybrid linear solvers. From past experience [10, 11] with
MPI-only simulations the BTF-based preconditioner will be used for ckt1 and
ckt2. ShyLU will provide a much more robust solver strategy for ckt3 , as it has
a large irreducible conductance matrix. The BTF-based preconditioner is paired
with the Epetra MPI+threads implementation in these experiments. For both
linear solver strategies, KLU is chosen as the block diagonal solver.

A scaling study is performed using ckt1 to determine the number of MPI pro-
cesses per node resulting in the best linear solver performance for the BTF-based
preconditioner. The simulations are run for various numbers of MPI processes
per node (ppn), 4, 8, or 16, from 1 to 8 nodes. The results in Table 3 indicate
that using 4 processes per node enables the simulator to achieve a faster linear
solver time than with 8 or 16 processes per node. In fact, both 8 and 16 processes
per node achieve their peak linear solver performance with 16 MPI processes.
The number of MPI processes is the same as the number of subdomains, as a
result the preconditioner is more effective with fewer MPI ranks. The hybrid
approach allows us to use the available cores effectively with fewer subdomains
and a better preconditioner. For comparison the 4ppn configuration (with 32
MPI processes) results in 25% speedup over 16ppn configuration and results in
a 9.5x speedup over PARDISO’s time (Table 2) .



Table 3. Comparison of total linear solve time for ckt1 when the number of MPI
processes per node (ppn) is varied with one thread.

MPI processes 4ppn 8ppn 16ppn

4 253.8 - -

8 125.9 136.7 -

16 77.5 83.5 94.7

32 74.8 84.5 100.4

Fig. 3. Speedup of Xyce’s simulation time and linear solve time for strong scaling
experiments with different configurations of MPI Tasks X Threads per node using
BTF (ckt2, left) and ShyLU (ckt3, right).

A larger scaling study is performed for ckt2, which generates a much larger
linear system (Table 1). The strong scaling results for the linear solver time
and total simulation time are presented in Fig. 3(left). They indicate that the
BTF-based preconditioning technique achieves scalable performance up to 64
MPI processes, or 256 cores. At 32 MPI processes, the Epetra MPI+threads
implementation provides an additional 2x speedup over KLU. Overall the total
simulation time is 27x faster on 64 MPI processes for this circuit.

The largest and most challenging test case is ckt3. For single node runs, only
KLU and SuperLU can finish this simulation and take 4 hours and 20 hours,
respectively, for a transient time of 1 ns. Typical simulations require a transient
time of 20 ns or longer, which would result in the simulation taking more than
a week. The hybrid linear solver - ShyLU - is used to simulate ckt3 on up to 256
cores. The results, shown in Fig. 3 (right), indicate a significant speedup in the
linear solve time, up to 22x, and total simulation time, up to 19x.

The importance of hybrid parallelism is illustrated in Fig. 3(right) by compar-
ing different MPI tasks x threads per node (8x2 vs 4x4). The 4x4 configuration
clearly wins in the larger core counts (128 and 256). At 256 cores, the number of
MPI processes for the 8x2 configuration is 128, which is equal to the number of
parts for ShyLU’s partitioning (see Fig. 2). Experiments indicate that the ideal
part size for ckt3 is 64. Using 128 parts results in a matrix that is imbalanced
in the direct factorization phase. This results in the 8x2 case having the best
performance with 128 cores (or 64 MPI processes). The 4x4 case achieves its best
performance with 64 MPI processes for 256 cores. Thus, using four threads in-



stead of two threads allowed ShyLU to speedup the simulation by an additional
4x (from 15x to 19x) for higher core counts. An MPI-only version [11] peaks at
just 64 cores because of the limited inherent parallelism in the linear problem.

5 Conclusion

This paper proposes hybrid techniques for enabling fast, parallel circuit simula-
tion of large-scale ASICs on modern multicore platforms. These techniques are
implemented in a MPI-based parallel circuit simulator, Xyce, and tested on a set
of challenging integrated circuits. The results presented indicate that the hybrid
linear solver strategies provide a significant improvement to Xyce’s scalability.
For a 500K device ASIC, the BTF-based preconditioned iterative method en-
ables Xyce to achieve a 27x speedup on 256 cores. While, ShyLU, the Schur
complement based hybrid linear solver, enables Xyce to achieve a 19x speedup
on 256 cores for a 2 million device ASIC.

References

1. C. Baker, E. Boman, M. Heroux, E. Keiter, S. Rajamanickam, R. Schiek, and
H. Thornquist. Enabling next-generation parallel circuit simulation with Trilinos.
In Euro-Par 2011: Parallel Processing Workshops, volume 7155 of LNCS. 2012.

2. A. Basermann, U. Jaekel, M. Nordhausen, and K. Hachiya. Parallel iterative
solvers for sparse linear systems in circuit simulation. Future Gener. Comp. Sys.,
21(8):1275–1284, January 2005.

3. T. A. Davis and E. P. Natarajan. Algorithm 907: KLU, a direct sparse solver for
circuit simulation problems. ACM Trans. Math. Softw., 37:36:1–36:17, Sept. 2010.

4. K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and Ü.V. Çatalyürek.
Parallel hypergraph partitioning for scientific computing. In Proc. of 20th Inter-
national Parallel and Distributed Processing Symposium (IPDPS’06). IEEE, 2006.

5. E. R. Keiter, H. K. Thornquist, R. J. Hoekstra, T. V. Russo, R. L. Schiek, and
E. L. Rankin. Parallel transistor-level circuit simulation. In Advanced Simulation
and Verification of Electronic and Biological Systems, pages 1–21. Springer, 2011.

6. X. S. Li. An overview of SuperLU: Algorithms, implementation, and user interface.
ACM Trans. Math. Softw., 31:302–325, September 2005.

7. X. S. Li and J. W. Demmel. SuperLU DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems. ACM Tran. on Math. Soft.,
29(2):110–140, June 2003.

8. L. W. Nagel. SPICE2, a computer program to simulate semiconductor circuits.
Technical Report ERL-M250, University of California, Berkeley, 1975.

9. S. Rajamanickam, E.G. Boman, and M.A. Heroux. ShyLU: A hybrid-hybrid solver
for multicore platforms. In IEEE 26th International Parallel Distributed Processing
Symposium (IPDPS), pages 631 –643, may 2012.

10. H. K. Thornquist, E. R. Keiter, R. J. Hoekstra, D. M. Day, and E. G. Boman. A
parallel preconditioning strategy for efficient transistor–level circuit simulation. In
Proceedings of the 2009 (ICCAD). ACM, Nov. 2009.

11. H. K. Thornquist, E. R. Keiter, and S. Rajamanickam. Electrical modeling and
simulation for stockpile stewardship. XRDS, 19(3):18–22, March 2013.

12. I. Yamazaki and X. S. Li. On techniques to improve robustness and scalability of
a parallel hybrid linear solver. In Proc. of the 9th Int. conf. on High perf. comp.
for comput. sci., VECPAR’10, Berlin, Heidelberg, 2011. Springer-Verlag.


