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Abstract. We propose a mixed-precision orthogonalization scheme that
takes the input matrix in a standard 64-bit floating-point precision,
but accumulates its intermediate results in the doubled-precision. When
the target hardware does not support the desired higher precision, we
use software emulation. Compared with the standard orthogonalization
scheme, we require about 8.5× more computation but a much smaller
increase in communication. Since the computation is becoming less ex-
pensive compared to the communication on new and emerging archi-
tectures, the relative cost of our mixed-precision scheme is decreasing.
Our case studies with CA-GMRES on a GPU demonstrate that using
mixed-precision for this small but critical segment of CA-GMRES can
improve not only its overall numerical stability but also, in some cases,
its performance. We also study an adaptive scheme to dynamically adjust
the step size of the matrix powers kernel. Our experiments on multiple
GPUs show that a near optimal step size can be chosen based on the
performance measurements from the first restart loop of CA-GMRES.

1 Introduction

On modern computers, communication (e.g., data movement through memory
hierarchies) is becoming expensive compared to computation (i.e., floating point
operations). It is critical to take this hardware trend into consideration when
designing high-performance software for new and emerging computers. To this
end, we previously studied a communication-avoiding variant [3] of the Gener-
alized Minimum Residual method [4] (CA-GMRES) on multicore CPUs with
multiple GPUs [6], focusing on the orthogonalization (Orth) and matrix powers
kernels (MPK ). We found that the Cholesky QR (CholQR) orthogonalization [5]
obtains a superior performance based on the optimized BLAS-3 GPU kernels.
Unfortunately, CholQR can be numerically unstable, and CA-GMRES may not
converge even with reorthogonalization. We also found that depending on the
matrix sparsity pattern, MPK can be slower than the standard algorithm due
to the computational and/or communication overheads traded for reducing the

0 We thank Maho Nakata, Daichi Mukunoki, and the members of DOE “Extreme-scale
Algorithms & Solver Resilience (EASIR)” for helpful discussions.



x̂ := 0 and v1 := b/‖b‖2.
repeat (restart-loop)

Projection Subspace Generation on GPUs (inner-loop):
for j = 1, s + 1, 2s + 1, . . . ,m do

MPK : Generate new vectors vk+1 := Avk

for k = j, j + 1, . . . ,min(j + s,m).
BOrth: Orthogonalize Vj+1:j+s+1 against V1:j .
TSQR: Orthogonalize the vectors within Vj+1:j+s+1.

end for

Projected Subsystem Solution on CPUs (restart):

Compute the solution x̂ in the generated subspace,
which minimizes its residual norm.

Set v1 := r/‖r‖2, where r := b− Ax̂.
until solution convergence do

Fig. 1. CA-GMRES(s,m).

Step 1: Gram-matrix formation
for d = 1, 2, . . . , ng do

B(d) := V
(d)T
1:s+1

V
(d)
1:s+1

on GPU

end for

B :=
∑

B(d) (comm)

Step 2: Cholesky factorization
R := chol(B) on CPU

Step 3: Orthogonalization
for d = 1, 2, . . . , ng do

copy R to d-th GPU

V
(d)
1:s+1

:= V
(d)
1:s+1

R−1 on GPU

end for

Fig. 2. CholQR.

communication latency. This is especially true with CA-GMRES, where a rela-
tively large step size is preferred by Orth.

To address the aforementioned deficiencies, in this paper, we first design and
study a mixed-precision CholQR that takes the input matrix in a standard pre-
cision but accumulates its intermediate results in a higher-precision. Compared
with the standard scheme, our mixed-precision scheme increases the computa-
tional cost by 8.5× but the increase in its communication cost is less significant.
Since the computation is becoming less expensive compared to the communi-
cation on new and emerging architectures, we hope to improve the overall nu-
merical stability of CA-GMRES using the mixed-precision without a significant
increase in the orthogonalization time. Case studies on different GPUs demon-
strate that this mixed-precision scheme can improve not only the stability of
CA-GMRES but also, in some cases, its performance by allowing a larger step
size, avoiding the reorthogonalization, and improving the solution convergence
rate. We then study an adaptive scheme to dynamically adjust the step size of
MPK. We demonstrate that a near optimal step size can be found based on the
performance measurements from the first restart loop of CA-GMRES.

2 Communication-Avoiding GMRES

The j-th GMRES iteration generates the (j + 1)-th Krylov basis vector vj+1

through a sparse matrix-vector multiply (SpMV ) followed by its orthonormal-
ization (Orth) against the previously-generated basis vectors. In our implemen-
tation [6], the coefficient matrix A and the basis vectors are distributed in a
block row format among the GPUs on a compute node. We then generate these
basis vectors on the GPUs, while the projected subsystem is solved on the CPUs.

Even on a single GPU, both SpMV and Orth require communication to move
the data through the memory hierarchy of the GPU. CA-GMRES [3] aims to
reduce this communication by replacing SpMV and Orth with three new kernels
– matrix powers kernel (MPK ), block orthogonalization (BOrth), and tall-skinny
QR (TSQR) – that generate and orthogonalize a set of s basis vectors at once.



# of d-instructions # of d-instructions
dd-multiply Add/Sub Mul FMA Total dd-addition Add/Sub Mul FMA Total

dd-input 5 3 1 9 IEEE-style 20 0 0 20
d-input 3 1 1 5 Cray-style 11 0 0 11

Fig. 3. Number of double-precision instructions in double-double operations.

Even on one GPU, CA-GMRES can obtain a speedup of up to two [6]. Figure 1
shows the pseudocode of CA-GMRES(s, m), where vj and Vj:k are the j-th
column and the submatrix consisting of the j-th through the k-th columns of V ,
respectively, and the iteration is restarted after m+1 basis vectors are generated.

3 Cholesky QR factorization

In this section, we use V
(d)
1:s+1 to denote the local matrix of V1:s+1 on the d-th

GPU, and ng is the number of available GPUs. To orthogonalize the s+ 1 vec-
tors V1:s+1 (as for TSQR), CholQR first forms the Gram matrixB := V T

1:s+1V1:s+1

through the matrix-matrix product B(d) := V
(d)T
1:s+1V

(d)
1:s+1 on the GPU, followed

by the reduction B :=
∑ng

d=1B
(d) on the CPU. Next, the Cholesky factor R of B

is computed on the CPU. Finally, the GPU orthogonalizes V1:s+1 by a triangu-

lar solve V
(d)
1:s+1 := V

(d)
1:s+1R

−1. Hence, all the required GPU-GPU communication
is aggregated into a pair of messages, while the GPU computation is based on
BLAS-3. Hence, both intra and inter GPU communication can be optimized. Fig-
ure 2 shows these three steps of CholQR. Unfortunately, the condition number
κ(B) of B is the square of κ(V1:s+1) [5]. This often causes numerical instability,
especially in CA-GMRES, where even using the Newton basis [1], the vector vj

can converge to the principal eigenvector of A, and κ(V1:s+1) can be large.

4 Mixed-Precision Orthogonalization Scheme

4.1 Implementation

To improve the numerical stability of CholQR, we use the doubled-precision at
the first two steps of CholQR, while the last step is in the standard precision.
When the target hardware does not support a desired higher precision, software
emulation is needed. For instance, double-double (dd) precision emulates the
quadruple precision by representing each numerical value by an unevaluated
sum of two double precision numbers, and is capable of representing the 106 bits
precision, while the double-precision number is of 53 bits precision. There are
two standard implementations [2] of adding two numerical values in dd-precision,
a + b = ĉ + e, where e is the round-off error; one satisfies the IEEE-style error
bound (e = δ(a+ b) with |δ| ≤ 2εdd and εdd = 2−105), and the other satisfies the
weaker Cray-style error bound (e = δ1a+ δ2b with |δ1|, |δ2| ≤ εdd). Table 3 lists
the computational costs of the dd-arithmetics required by our mixed-precision
dd-CholQR. The standard CholQR in double precision (d-CholQR) performs
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Fig. 4. InnerProds implementation (arrow
shows data access by a GPU thread).

double regC[mb][nb], regA[mb], regB
for ` = 1, . . . h

nt
do

for j = 1 . . . nb

regA[i] = x`∗nt,j

for j = 1, . . . , nb do
regB = y

`∗nt,j

for i = 1 . . .mb

regC[i][j] += regA[i] * regB
end for

end for

Fig. 5. InnerProds pseudocode.

about a half of its total flops at Step 1 and the other half at Step 3. Hence,
using dd-precision for Steps 1 and 2, our dd-CholQR performs about 8.5× more
computation than d-CholQR. On the other hand, the increase in communication
is less significant; our intra-GPU communication is about the same, only writing
the s-by-s output matrix in the dd-precision while reading the n-by-s input
matrix in the d-precision (s � n). We communicate twice more data between
the GPUs (16s2Bytes with s ≈ 10), but with the same latency.

Since the Gram matrix is much smaller in its dimension than the coefficient
matrix (s� n), CholQR typically spends only a small portion of its orthogonal-
ization time computing its Cholesky factor at Step 2. In addition, solving the tri-
angular system with many right-hand-sides at Step 3 exhibits a high parallelism
and can be implemented efficiently on a GPU. On the other hand, at Step 1,
computing each element of the Gram matrix requires a reduction operation on n-
length vectors. These inner-products (InnerProds) are communication-intensive
and exhibit only limited parallelism. Hence, Step 1 often becomes the bottle-
neck, where standard implementations fail to obtain high-performance on the
GPU. In our batched implementation of a matrix-matrix multiply (GEMM) to
compute InnerProds, B := XTY , each thread block computes a partial product,
B(i,j,k) := X(k,i)TY (k,j), where X(k,i) and Y (k,j) are h-by-mb and h-by-nb blocks
of X and Y , respectively.1 Within the thread block, each of its nt threads com-
putes its partial result in the local registries (see Figure 4 for an illustration, and
Figure 5 for the pseudocode, where x`,j is the (`, j)-th element of X(k,i)). Then,
each thread block performs the binary reduction of the partial results among
its threads, summing nr columns at a time using the shared memory to store
nt× (mb×nr) numerical values. The final result is computed by another binary
reduction among the thread blocks. Our implementation is designed to reduce
the number of synchronizations among the threads while relying on the CUDA
runtime and the parameter tuning to exploit the data locality. For the symmetric
(SYRK) multiply, B := V TV , the thread blocks compute only a triangular part
of B and reads V (k,j) once for computing a diagonal block.

1 In the current implementation, the numbers of rows and columns in X and Y are a
multiple of h, and multiples of mb and nb, respectively, where nb is a multiple of nr.
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Fig. 6. Performance of standard and mixed-precision InnerProds in double precision.

4.2 Performance

Figure 6 compares the standard and mixed-precision InnerProds performance on
different GPUs. Each GPU has a different relative cost of communication to com-
putation, and on top of each plot, we show the ratio of the double-precision peak
performance (Gflop/s) over the shared memory bandwidth (GB/s) (i.e., flop/B
to obtain the peak). This ratio tends to increase on a newer architecture, indicat-
ing a greater relative communication cost. We tuned our kernel for each matrix
dimension on each GPU in each precision (see the five tunable parameters h, mb,
nb, nr, and nt in Section 4.1), and the figure shows the optimal performance.
Based on the memory bandwidth and the fixed number of columns in the figure,
the respective peak performances of d-GEMM are 442, 625, and 720Gflop/s on
M2090, K20c, and K40. Our d-GEMM obtained 29, 26, 28% of these peak per-
formances and speedups of about 1.8, 1.7, and 1.7 over CUBLAS 5.5 on these
GPUs. In addition, though it performs 16× more instructions, the gap between
dd-InnerProds and d-InnerProds tends to decrease on a newer architecture, and
dd-InnerProds is only less than four times slower on K20c.

Figure 7 shows the breakdown of d-CholQR orthogonalization time. Because
of our efficient implementation of InnerProds, only about 30% of the orthogo-
nalization time is now spent in d-InnerProds. As a result, while dd-InnerProds
was about four times more expensive than d-InnerProds, Figure 8 shows that
dd-CholQR is only about 1.7 or 1.4 times more expensive than d-CholQR when
GEMM or SYRK is used for InnerProds, respectively. For dd-CholQR, the
Cholesky factorization in dd-precision is computed using MPACK2 on the CPU.

2 http://mplapack.sourceforge.net
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Fig. 8. d/dd-CholQR performance.

4.3 Case Studies with CA-GMRES

Figure 9 shows the normalized solution time of CA-GMRES with a single K20c
for two sparse matrices from University of Florida Sparse Matrix collection3.
Using dd-CholQR, even with the computationally expensive software emulation,
the solution time was reduced not only because the reorthogonalization was
avoided but also because CA-GMRES converged in fewer iterations.

5 Adaptive Step Size for Matrix Powers Kernel

Most of CA-GMRES implementations including ours [6] use the same step size s
for MPK, BOrth, and TSQR, while the optimal s for MPK is typically smaller
than that of BOrth or TSQR due to the computational and/or communication
overheads associated with MPK. Instead of having a different s for MPK as
an input, we design an adaptive scheme to dynamically adjust the step size ŝ
of MPK based on the static input (i.e., the sparsity pattern of the coefficient
matrix A) and the performance measurements from the first restart-loop of CA-
GMRES.4 For this, we use the following performance model:

MPK time = Inter-communication time + Kernel time,

where we let

Inter-communication time = Latency +
Communication volume

Bandwidth
, and

Kernel time =
Flop count

flop/s
+ # of random data accesses×Data access time,

and “Kernel time” consists of the computation and inter-communication time.
In our experiments, “Communication volume” and “Flop count” are computed

3 http://www.cise.ufl.edu/research/sparse/matrices/
4 Our first loop is GMRES since the shifts for the Newton basis are not available.
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Fig. 9. CA-GMRES Performance: On top of each bar shows total time in sec. and
restart count. CA-GMRES with non-optimal s got speedups over GMRES with CGS
orthogonalization scheme.

based on the sparsity pattern of the coefficient matrix, while “# of random data
accesses” is approximated by the aggregated number of non-local vector elements
accessed by MPK. On the other hand, we computed “Latency,” “Bandwidth,”
“flop/s,” and “Data access time” based on the measured time of the reduction
for the dot-products, point-to-point communication for SpMV, SpMV, and data
copy on the GPU, respectively. To generate the s basis vectors, we invoke MPK
s/ŝ times using the step size ŝ before calling BOrth and TSQR. Figure 10 shows
the results for two sparse matrices from University of Florida Sparse Matrix
collection on three Tesla M2090 GPUs.

6 Conclusion

We proposed a mixed-precision orthogonalization scheme to improve the nu-
merical stability of CA-GMRES. Our case studies demonstrated that though it
requires about 8.5× more computation, using a higher-precision for this small
but critical segment of CA-GMRES can improve not only its overall stability
but also, in some cases, its performance. We also showed that the overhead of
a higher-precision is decreasing on a newer architecture with an increasingly
lower cost of computation. In this paper, we only studied the effects of a higher-
precision on a single GPU. On multiple GPUs of a compute node, the perfor-
mance of CA-GMRES depends more on the performance of the GPU kernels
(i.e., intra-GPU communication) than the inter-GPU communication [6]. Hence,
similar benefits of using a higher-precision are expected on the multiple GPUs.
We will study its effects on a system with a greater communication latency (e.g.,
distributed GPUs or CPUs) where the improvement may be greater. We are also
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Fig. 10. Result of MPK Performance Model (left) and its effect on CA-GMRES (right).

studying the use of mixed-precision in eigensolvers where the orthogonality can
be more crucial, and are writing an extended paper focusing on the numerical
properties of our mixed-precision scheme [7]. Finally, it is of our interest to apply
or extend recent mixed precision efforts (e.g., reproducible BLAS5 and precision
tuning6) for our studies. In this paper, we also studied an adaptive scheme to
adjust the step size of MPK on multiple GPUs. Our MPK is currently optimized
only for the inter-GPU communication which is relatively inexpensive on a node.
We expect a greater benefit of the adaptive scheme (in term of time or memory)
on a larger system with greater communication cost (e.g., a distributed system).
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