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Abstract. HYDRA simulates a variety of experiments carried out at
the National Ignition Facility and other high energy density physics fa-
cilities. It has packages to simulate radiation transfer, atomic physics,
hydrodynamics, laser propagation, and a number of other physics effects.
HYDRA has over one million lines of code, includes MPI and thread-level
(OpenMP and pthreads) parallelism, has run on a variety of platforms
for two decades, and is undergoing active development.
In this paper, we demonstrate that HYDRA’s thread-based load balanc-
ing approach is very effective. Hardware counters from IBM Blue Gene/Q
runs show that none of HYDRA’s packages are memory bandwidth lim-
ited, a few come close to the maximum integer instruction issue rate, and
all are well below the maximum floating point issue rate.

Topics: Large-scale Simulations in CS&E, Multiscale and Multiphysics Prob-
lems, Performance Analysis.

1 HYDRA - A Multi-Physics Simulation Code

The goal of this paper is to introduce readers to a complex “multi-physics”
code, discuss some of the techniques used to improve performance, and use data
from hardware counters to provide insight into the bottlenecks controlling the
performance. We chose HYDRA [1] [2], which is used to simulate experiments
conducted at the National Ignition Facility (NIF) [3] and other pulsed laser
facilities, as our test code. The laser deposits a large amount of energy in a
small volume, so HYDRA is focused on simulating the processes of high energy
density physics.

HYDRA is a ”multi-physics” simulation code. Figure 1 shows the many
physics packages in HYDRA and their interconnections. HYDRA has charac-
teristics similar to other multi-physics codes at LLNL. It consists of over a mil-
lion lines of code, has run on a variety of platforms for two decades, and is still
undergoing active development. HYDRA runs a wide range of simulations and
only a subset of the physics packages are used in any given run.

This is the first paper to present a performance analysis of HYDRA. Single-
physics codes may have a single loop which consumes over 90% of the run time.
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Fig. 1. HYDRA has many physics packages so that it can simulate a broad range of
experiments, including those performed on the National Ignition Facility Laser.

HYDRA and other multi-physics codes have dozens of “hot loops”, and the hot
loops change from one run to the next. Multi-physics codes use a programming
approach focused on portability and programmer productivity. Performance is
very important, but optimizations need to work for a variety of systems. Modi-
fying the code to increase the percentage of stride one accesses or enable generic
SIMD utilization is worthwhile, but tuning for a particular SIMD unit is not.

HYDRA solves a set of coupled partial differential equations (PDEs) for
time-dependent fields on a grid in three spatial dimensions. A large number of
zones are often required to resolve small features. The temperature, density,
and velocity depend only on the spatial coordinates, but the radiation field also
depends on the photon energy. Simulations often use 100-200 energy bins so the
radiation field and opacity arrays may dominate memory usage. The equations
are solved using the method of operator splitting. This essentially means having
one function call (or one loop nest) for each term in the PDEs.

There is synchronization between all MPI processes at the end of each oper-
ator. This approach is referred to as ”bulk synchronous” programming [4]. Bulk
synchronous programs have loops which are much simpler than if all terms were
evaluated in a single very large loop. This makes the code easier to write and
maintain. Each team member specializes in a few areas of physics and rarely
needs to look at code related to other physics packages.



The operators in HYDRA are applied to full domains and the arrays they
operate on are large compared to cache. That means each operator pulls its input
arrays from DRAM into the cache. It then performs calculations, and stores the
updated arrays back to DRAM. Most fields are used by multiple operators, so
they may make multiple round trips between DRAM and cache every time step.
Operators using iterative methods may pull arrays into cache multiple times. A
system needs to have enough memory bandwidth to fetch arrays in a time short
compared to the compute time for a single operator, not the compute time for
a whole time step.

2 HYDRA characterization

HYDRA uses a block structured mesh. The mesh has one or more user blocks
which correspond to major components of the object being simulated. For exam-
ple, the capsule might be the first user block and the hohlraum wall the second
user block in a NIF simulation. User blocks have curvilinear coordinates and a
regular 3D grid topology. This is sometimes referred to as an “ijk grid”. There is
a one-to-one match of faces on adjacent user blocks. Most zones are surrounded
by exactly 26 other zones. The number of neighboring zones may be more or
less than 26 at the corner of a user block (“enhanced” and “reduced” connectiv-
ity). HYDRA uses domain decomposition of the spatial grid to implement MPI
parallelism. User blocks are decomposed into multiple ijk domains.

All major physics packages also have thread-level parallelism. In the case of
hydrodynamics and some other packages, threading is over domains. If there are
4 hardware threads available per MPI process, the user requests 4 domains per
process and one thread handles each domain. This threading is implemented via
OpenMP directives and is done at a level high enough that OpenMP thread syn-
chronization time is not an issue. There are a number of important physics pack-
ages where the computational cost of updating a zone varies by large amounts
from domain to domain. The regions with the highest work load shift through-
out the course of a run. Some HYDRA packages use a more complex threading
approach to deal with load imbalance.

The DCA package computes frequency-dependent opacities for all zones.
Some zones require more work than others, particularly when the matter is
not in local thermodynamic equilibrium. The DCA package varies the number
of OpenMP threads per domain (based on timing from the last time step) so
that the work per thread is roughly constant. As an example, HYDRA might
have 8 MPI domains on an Intel Sandy Bridge node with 16 cores and 32 hard-
ware threads. If one domain has much more DCA work than the other seven, it
might be assigned 32 threads while the other domains have one thread each. This
approach evens out the work per hardware thread on a single node, but it does
not help when there is a large imbalance in the DCA work on different nodes.
Threads are statically bound to processes on a BGQ system, so the dynamic
load balancing in DCA is turned off.



The threads in HYDRA’s laser ray trace and IMC (Implicit Monte Carlo)
packages cooperatively process a set of domains. On Linux clusters, two MPI
processes per node are typically designated as ”masters”. The other processes
on a node send their domains to the master processes and then become inactive.
On Blue Gene/Q systems, each process makes several “replicates” of its domain.
The IMC particles or laser rays for a domain are split among the replicates.
In either case, the active processes have several domains. A genetic algorithm
shuffles domains around until each process has a nearly constant amount of
work (based on the last time step). A process assigned a “difficult” domain is
also assigned several “easy” domains. Load balancing works well with 4 or more
domains per active process.

These packages use pthreads with thread specialization. Each active process
has a thread which handles all MPI message passing, so a thread safe MPI is
not required. Another thread handles all updates of the energy deposition array
(recording the net transfer of energy between the matter in a zone and the laser
rays or IMC particles passing through it), so locks on the deposition array are
not required. The remaining threads push IMC photons or trace laser rays.

3 Dynamic Load Balancing

The physics equations solved by HYDRA often require more work in some zones
than in others. If the problem is divided up into equal sized domains and no
provision ias made for load imbalance, the run time will be much longer than for
a well balanced job. The dynamic load balancing results presented below were
obtained from a standard NIF hohlraum simulation on a cluster with dual socket
Intel Sandy Bridge nodes and an Infiniband QDR interconnect.

Table 1. This table shows the time without and with dynamic load balancing for the
laser, IMC, and DCA packages during a HYDRA NIF simulation. The speedup for the
laser package was greater earlier in the run. The final line is the total physics time for
the run. A 50% speedup in the physics time is much appreciated by HYDRA’s users.

Time Time speedup
Package (sec) (sec) ratio

no balance balanced
laser 162.2 130.6 1.24
IMC 392.6 234.4 1.68
DCA 6.8 3.6 1.90
total 557.9 363.4 1.51

The results in Table 3 show that load balancing cuts the run time for some
packages almost in half and reduces the overall run time of the NIF simulation
to roughly two thirds of what it would be without load balancing. This is a
large improvement compared to what is typically obtained by adjusting compiler
optimization flags. Other multi-physics codes might benefit from adopting a load
balancing approach like HYDRA’s.



4 Studies on Blue Gene/Q

4.1 BGQ Overview

IBM’s Blue Gene/Q was chosen as the system on which to gather performance
data. The clock speed is 1.6 GHz and the chip uses the PowerPC instruction
set. A BGQ chip has 16 cores with 4 hardware threads each. Two threads per
core are required to reach the maximum instruction issue rate of 16 integer
instructions and 16 floating point instructions per cycle. The BGQ has a 4-
wide SIMD floating point unit and has a fused multiply-add (FMA) instruction.
Floating point instructions may perform from 1 to 8 floating point operations.
The L1 cache is 16 kB per core. Each core has a 2 MB slice of L2 cache operated
as part of a 32 MB shared cache. It has a high latency (roughly 50 ns) because it
uses eDRAM and requires extra logic to bind the slices together. The Intel Sandy
Bridge has a 17 ns latency to its L3 cache. The integer unit on the BGQ chip
handles loads, stores, integer arithmetic, address computations, and a number
of other instructions. Codes operating on arrays of floating point numbers issue
many integer instructions as they load and store array elements and compute
addresses. A BGQ system has a streams bandwidth of 28 GB/s per node. The
memory space is flat, so there is no need to worry about NUMA effects.

4.2 The BGQ Test Codes

HYDRA tests were run with 4 processes per node on 16 BGQ nodes. The 64
hardware threads on a node were equally divided amongst the 4 processes. HY-
DRA metrics are “calibrated” using data from three other codes.

pF3D is a massively parallel code which simulates laser-plasma interactions
in experiments using the National Ignition Facility laser and other high power
lasers. pF3D has fewer packages than HYDRA, but still has 2 dozen perfor-
mance critical loops. MCB is a Monte Carlo mini-app used in investigating new
computer systems and new programming approaches. It is dominated by integer
computation and has the erratic branching character of all Monte Carlo radi-
ation transport codes. microK is a set of simple vector loops used to measure
the performance impact of falling out of cache, speedups due to using SIMD
instructions, and other processor features. The loops in microK are so simple
that it is fairly easy to optimize them on a new system. The microK runs used
one MPI process with 32 OpenMP threads on a single node.

4.3 Performance Metrics

The HPM library written by Bob Walkup of IBM provides a simple way to
gather the desired hardware counters. HPM start and stop calls were added
around calls to physics package in the time step loop. HPM reports how many
times each event occurred in a package. An L2 miss is recorded for every 128
byte cache line loaded and a flush for every line stored. This makes it easy to
calculate the DRAM read and write bandwidth.



Table 2. This table shows performance metrics for two HYDRA test problems. Metrics
from three other codes are shown for reference. The polynomial kernel is the only one
which issues more floating point than integer instructions. The polynomial and dot
product kernels use the full memory bandwidth (28 GB/s) for large vectors, but all
other items use no more than 11%. For small vectors, microK runs completely out of
the L2 cache so we do not report any DRAM related numbers.

Time int Instr FP Instr FLOP per DRAM BW DRAM xfer L2 miss
Package (sec) per cycle per cycle Instr (GB/s) (GB ) per line

hydra hyd607
advect 0.66 5.74 1.90 1.59 3.21 2.13 1.31
eosOpac 0.32 1.70 0.48 1.32 0.46 0.146 2.17
econd 0.90 10.03 0.39 1.53 0.94 0.85 0.86
mtgrdif 17.20 8.74 0.25 1.58 0.85 14.65 0.73

hydra nifburn
hydro 0.17 4.38 2.21 1.62 1.89 0.31 1.58
advect 0.29 4.68 0.58 1.62 2.91 0.72 1.33
econd 0.32 12.66 0.95 1.66 0.32 0.10 2.89
laser 2.29 1.69 0.05 1.25 3.02 6.93 4.31
imc 10.06 1.06 0.21 1.60 1.29 12.93 5.27
burn 1.65 12.40 0.72 1.60 0.17 0.29 1.03

MCB
advance 19.52 4.52 0.18 1.31 0.25 4.92 1.01

pf3d kernels
couple4 8.43 4.02 1.47 2.81 1.46 12.32 0.45
absorbdt 1.02 4.61 1.13 1.77 1.21 1.23 0.43
acadv 5.16 3.56 1.15 2.25 1.87 9.67 0.28
advancefi 3.47 5.29 1.78 2.12 0.88 3.07 0.48
fft 0.68 3.02 1.88 1.30 2.64 1.79 0.48

microK small
sdot 0.02 8.16 1.90 8.00
poly 0.02 4.04 9.28 8.00
microK large
sdot 0.57 1.96 0.46 8.00 23.73 13.48 0.51
poly 0.51 1.09 2.56 8.00 26.21 13.42 1.42

Table 4.2 reports performance metrics from BGQ runs of the test applica-
tions. Two HYDRA test problems were run to show how the time spent in
physics packages and the set of packages used varies from problem to problem.

The hyd607 test problem performs a capsule-only simulation of a NIF im-
plosion experiment. Most time is spent in the multi-group diffusion package
(mtgrdif), with roughly 10% of the time spent on electron heat conduction, ad-
vection, equation of state, and opacities. The nifburn test problem performs an
integrated simulation of the capsule and the surrounding hohlraum for a NIF
experiment. Domain replication was employed to allow load balancing of the
laser and IMC packages. Most time is spent in the laser and IMC packages. The
hydrodynamics package, advection associated with ALE remaps, electron heat
conduction, and fusion burn combine to consume about 15% of the run time.



The BGQ compiler generates a fairly high fraction (30% or more) of FMA
instructions for all test codes. The BGQ compiler has difficulty generating SIMD
instructions unless the code is annotated with BGQ-specific alignment directives.
The simple loops in microK allowed us to add alignment directives and achieve
nearly a 100% SIMD fraction. It is impractical to add those directives to a large
code, so the SIMD fraction is low for HYDRA, pF3D, and MCB. Some of the
pF3D kernels deliver more than 2 FLOPs per instruction because they call IBM’s
“hand written” sin, exp, etc. special functions.

Floating point instruction issue rates are not a bottleneck. Only the poly-
nomial “kernel” issues more floating point instructions than integer instructions
(on the BGQ). HYDRA’s econd, burn and mtgrdiff packages and the dot prod-
uct of short vectors all execute more than 8 integer instructions per cycle and
their performance may be limited by integer issue rate.

MicroK results are reported for vectors which fit in on chip cache memory
(64K elements per thread) and for vectors large enough (512K elements per
thread) that they must be fetched from DRAM. The polynomial kernel achieves
over 50% of the peak floating point performance for short vectors but only 16%
of peak for long vectors. The microK kernels are memory bandwidth limited for
large vectors (the bandwidth is almost equal to the 28 GB/s streams bandwidth).
The highest memory bandwidth for HYDRA, pF3D, or MCB is 3.2 GB/s, so
memory bandwidth is not a bottleneck for ”production” codes.

The high cache and DRAM latency on a BGQ hurts the performance of
HYDRA. The 50 ns latency to the L2 cache on a BGQ is much larger than the 7
ns latency to the L3 cache on a Sandy Bridge. The L1P unit on a BGQ prefetches
from L2 to L1 to try and hide latency. The L1P hit rate for the IMC and laser
packages is 1-2%. HYDRA suffers a 50 ns delay on almost all L2 accesses, and
the effective bandwidth of L2 will be low. The DRAM latency on a BGQ is 220
ns versus 70 ns for a Sandy Bridge. The high latency on the BGQ will prevent
HYDRA from achieving full memory bandwidth unless prefetching from DRAM
to L2 works well. We have not measured the DRAM prefetch efficiency. The
laser rays and IMC particles move from zone-to-zone in a manner which is hard
to predict, so we expect that prefetch efficiency will be low.

The tables include ratios of cache misses to lines read. A cache line is 128
bytes on a BGQ system. HYDRA performs most computations using double
precision operands, so a line holds 16 numbers. A stride one loop should have
one cache miss per L2 cache line read. A package which accesses large arrays
randomly might have up to 16 misses per line. HYDRA’s IMC package has a
higher miss fraction than any other package in the table. That is not surprising
given that the particle list has photons almost randomly scattered through the
grid at the time the performance counters were read.

4.4 Memory Usage

The hyd607 test problem uses 1.7 GB of heap memory per node. The radiation
diffusion package transfers 14.7 GB between DRAM and the processor during a
time step, so some arrays are read multiple times. The diffusion package solves a



large sparse matrix using Hypre’s iterative CG solver with hybrid AMG/diagonal
preconditioner, so arrays are fetched multiple times per time step.

The nifburn test problem uses 2.7 GB of heap memory per node. The IMC
package transfers 12.97 GB between DRAM and the processor during a time step,
so some arrays are read multiple times. As the Monte Carlo particles randomly
wander through the grid, they will pull the opacity array in multiple times.

HYDRA either has enough memory bandwidth on the BGQ or is bottle-
necked by memory latency. Future systems will have a lower ratio of DRAM
bandwidth to peak performance. To deal with this “memory wall”, these sys-
tems may include some in-package memory (IPM). IPM bandwidth should be
high enough that HYDRA packages which fit in IPM will run efficiently. IPM
will have latency similar to DRAM, so it will not help if HYDRA is bottlenecked
by memory latency.

5 Conclusion

Our goal in this work was to investigate the performance characteristics of HY-
DRA, a multi-physics simulation code. We expect that other multi-physics codes
from LLNL will have similar characteristics. We demonstrated that HYDRA’s
thread based load balancing strategy is very effective. DRAM bandwidth is not a
limiting factor for any HYDRA package. The latency of DRAM or the L2 cache
may be a bottleneck. Floating point issue rates are never a limiting factor for
HYDRA, but integer issue rates may be a limiting factor for a few packages.

We demonstrated that the total memory traffic between the processor chip
and DRAM is significantly greater than the total amount of memory in use by
HYDRA, indicating that using IPM as a cache may have benefits for HYDRA
on future systems.

Prepared by LLNL under Contract DE-AC52-07NA27344, LLNL-TR-648439.
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